"src/diffusers/pipelines/ltx/pipeline_ltx_condition.py" did not exist on "ac863934870556505f6035127ed39466e57b6002"
test_padding.py 5.18 KB
Newer Older
1
2
3
4
5
import unittest
import torch
import torchani


6
class TestPaddings(unittest.TestCase):
7
8
9
10
11
12

    def testVectorSpecies(self):
        species1 = torch.LongTensor([0, 2, 3, 1])
        coordinates1 = torch.zeros(5, 4, 3)
        species2 = torch.LongTensor([3, 2, 0, 1, 0])
        coordinates2 = torch.zeros(2, 5, 3)
13
        species, coordinates = torchani.utils.pad_coordinates([
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)
        self.assertEqual(coordinates.abs().max().item(), 0)

    def testTensorShape1NSpecies(self):
        species1 = torch.LongTensor([[0, 2, 3, 1]])
        coordinates1 = torch.zeros(5, 4, 3)
        species2 = torch.LongTensor([3, 2, 0, 1, 0])
        coordinates2 = torch.zeros(2, 5, 3)
36
        species, coordinates = torchani.utils.pad_coordinates([
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)
        self.assertEqual(coordinates.abs().max().item(), 0)

    def testTensorSpecies(self):
        species1 = torch.LongTensor([
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
        ])
        coordinates1 = torch.zeros(5, 4, 3)
        species2 = torch.LongTensor([3, 2, 0, 1, 0])
        coordinates2 = torch.zeros(2, 5, 3)
65
        species, coordinates = torchani.utils.pad_coordinates([
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)
        self.assertEqual(coordinates.abs().max().item(), 0)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    def testPadSpecies(self):
        species1 = torch.LongTensor([
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
        ])
        species2 = torch.LongTensor([3, 2, 0, 1, 0]).expand(2, 5)
        species = torchani.utils.pad([species1, species2])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)

106
107
    def testPresentSpecies(self):
        species = torch.LongTensor([0, 1, 1, 0, 3, 7, -1, -1])
Gao, Xiang's avatar
Gao, Xiang committed
108
        present_species = torchani.utils.present_species(species)
109
110
111
112
        expected = torch.LongTensor([0, 1, 3, 7])
        self.assertEqual((expected - present_species).abs().max().item(), 0)


113
114
115
116
117
118
119
120
121
122
class TestStripRedundantPadding(unittest.TestCase):

    def _assertTensorEqual(self, t1, t2):
        self.assertEqual((t1 - t2).abs().max().item(), 0)

    def testStripRestore(self):
        species1 = torch.randint(4, (5, 4), dtype=torch.long)
        coordinates1 = torch.randn(5, 4, 3)
        species2 = torch.randint(4, (2, 5), dtype=torch.long)
        coordinates2 = torch.randn(2, 5, 3)
123
        species12, coordinates12 = torchani.utils.pad_coordinates([
124
125
126
127
128
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        species3 = torch.randint(4, (2, 10), dtype=torch.long)
        coordinates3 = torch.randn(2, 10, 3)
129
        species123, coordinates123 = torchani.utils.pad_coordinates([
130
131
132
133
            (species1, coordinates1),
            (species2, coordinates2),
            (species3, coordinates3),
        ])
Gao, Xiang's avatar
Gao, Xiang committed
134
        species1_, coordinates1_ = torchani.utils.strip_redundant_padding(
135
136
137
            species123[:5, ...], coordinates123[:5, ...])
        self._assertTensorEqual(species1_, species1)
        self._assertTensorEqual(coordinates1_, coordinates1)
Gao, Xiang's avatar
Gao, Xiang committed
138
        species12_, coordinates12_ = torchani.utils.strip_redundant_padding(
139
140
141
142
143
            species123[:7, ...], coordinates123[:7, ...])
        self._assertTensorEqual(species12_, species12)
        self._assertTensorEqual(coordinates12_, coordinates12)


144
145
if __name__ == '__main__':
    unittest.main()