test_padding.py 3.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import unittest
import torch
import torchani


class TestPadAndBatch(unittest.TestCase):

    def testVectorSpecies(self):
        species1 = torch.LongTensor([0, 2, 3, 1])
        coordinates1 = torch.zeros(5, 4, 3)
        species2 = torch.LongTensor([3, 2, 0, 1, 0])
        coordinates2 = torch.zeros(2, 5, 3)
        species, coordinates = torchani.padding.pad_and_batch([
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)
        self.assertEqual(coordinates.abs().max().item(), 0)

    def testTensorShape1NSpecies(self):
        species1 = torch.LongTensor([[0, 2, 3, 1]])
        coordinates1 = torch.zeros(5, 4, 3)
        species2 = torch.LongTensor([3, 2, 0, 1, 0])
        coordinates2 = torch.zeros(2, 5, 3)
        species, coordinates = torchani.padding.pad_and_batch([
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)
        self.assertEqual(coordinates.abs().max().item(), 0)

    def testTensorSpecies(self):
        species1 = torch.LongTensor([
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
            [0, 2, 3, 1],
        ])
        coordinates1 = torch.zeros(5, 4, 3)
        species2 = torch.LongTensor([3, 2, 0, 1, 0])
        coordinates2 = torch.zeros(2, 5, 3)
        species, coordinates = torchani.padding.pad_and_batch([
            (species1, coordinates1),
            (species2, coordinates2),
        ])
        self.assertEqual(species.shape[0], 7)
        self.assertEqual(species.shape[1], 5)
        expected_species = torch.LongTensor([
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [0, 2, 3, 1, -1],
            [3, 2, 0, 1, 0],
            [3, 2, 0, 1, 0],
        ])
        self.assertEqual((species - expected_species).abs().max().item(), 0)
        self.assertEqual(coordinates.abs().max().item(), 0)

    def testPresentSpecies(self):
        species = torch.LongTensor([0, 1, 1, 0, 3, 7, -1, -1])
        present_species = torchani.padding.present_species(species)
        expected = torch.LongTensor([0, 1, 3, 7])
        self.assertEqual((expected - present_species).abs().max().item(), 0)


if __name__ == '__main__':
    unittest.main()