test_forces.py 5.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import torch
import torchani
import unittest
import os
import pickle

path = os.path.dirname(os.path.realpath(__file__))
N = 97


class TestForce(unittest.TestCase):

13
    def setUp(self):
14
        self.tolerance = 1e-5
15
16
17
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
        nnp = ani1x.neural_networks[0]
18
19
        self.model = torch.nn.Sequential(self.aev_computer, nnp)

20
21
22
    def random_skip(self):
        return False

23
24
    def transform(self, x):
        return x
25
26
27

    def testIsomers(self):
        for i in range(N):
28
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
29
30
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces = pickle.load(f)
31
32
33
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                forces = torch.from_numpy(forces)
34
35
36
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
Gao, Xiang's avatar
Gao, Xiang committed
37
                coordinates.requires_grad_(True)
38
39
40
41
42
43
44
45
46
                _, energies = self.model((species, coordinates))
                derivative = torch.autograd.grad(energies.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, self.tolerance)

    def testPadding(self):
        species_coordinates = []
        coordinates_forces = []
47
        for i in range(N):
48
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
49
50
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces = pickle.load(f)
51
52
53
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                forces = torch.from_numpy(forces)
54
55
56
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
Gao, Xiang's avatar
Gao, Xiang committed
57
                coordinates.requires_grad_(True)
58
59
                species_coordinates.append({'species': species, 'coordinates': coordinates})
        species_coordinates = torchani.utils.pad_atomic_properties(
60
            species_coordinates)
61
        _, energies = self.model((species_coordinates['species'], species_coordinates['coordinates']))
62
63
64
65
66
67
        energies = energies.sum()
        for coordinates, forces in coordinates_forces:
            derivative = torch.autograd.grad(energies, coordinates,
                                             retain_graph=True)[0]
            max_diff = (forces + derivative).abs().max().item()
            self.assertLess(max_diff, self.tolerance)
68

69
    def testBenzeneMD(self):
Gao, Xiang's avatar
Gao, Xiang committed
70
71
        tolerance = 1e-5
        for i in range(10):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            datafile = os.path.join(path, 'test_data/benzene-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces, cell, pbc \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0)
                cell = torch.from_numpy(cell).float()
                pbc = torch.from_numpy(pbc)
                forces = torch.from_numpy(forces)
                coordinates = torchani.utils.map2central(cell, coordinates, pbc)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
                _, energies_ = self.model((species, coordinates, cell, pbc))
                derivative = torch.autograd.grad(energies_.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, tolerance)

    def testTripeptideMD(self):
        tolerance = 2e-6
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces, _, _ \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).requires_grad_(True)
                species = torch.from_numpy(species).unsqueeze(0)
                forces = torch.from_numpy(forces)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
                _, energies_ = self.model((species, coordinates))
                derivative = torch.autograd.grad(energies_.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, tolerance)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, forces in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float) \
                                   .requires_grad_(True)
                species = torch.from_numpy(species)
                forces = torch.from_numpy(forces).to(torch.float)
                _, energies = self.model((species, coordinates))
                derivative = torch.autograd.grad(energies.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, self.tolerance)

127
128
129

if __name__ == '__main__':
    unittest.main()