test_forces.py 2.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import torch
import torchani
import unittest
import os
import pickle

path = os.path.dirname(os.path.realpath(__file__))
N = 97


class TestForce(unittest.TestCase):

13
    def setUp(self):
14
        self.tolerance = 1e-5
15
        builtins = torchani.neurochem.Builtins()
16
        self.aev_computer = builtins.aev_computer
17
        nnp = builtins.models[0]
18
19
20
21
        self.model = torch.nn.Sequential(self.aev_computer, nnp)

    def transform(self, x):
        return x
22
23
24
25
26
27

    def testIsomers(self):
        for i in range(N):
            datafile = os.path.join(path, 'test_data/{}'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces = pickle.load(f)
28
29
30
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
Gao, Xiang's avatar
Gao, Xiang committed
31
                coordinates.requires_grad_(True)
32
33
34
35
36
37
38
39
40
                _, energies = self.model((species, coordinates))
                derivative = torch.autograd.grad(energies.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, self.tolerance)

    def testPadding(self):
        species_coordinates = []
        coordinates_forces = []
41
42
43
44
        for i in range(N):
            datafile = os.path.join(path, 'test_data/{}'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces = pickle.load(f)
45
46
47
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
Gao, Xiang's avatar
Gao, Xiang committed
48
                coordinates.requires_grad_(True)
49
50
                species_coordinates.append((species, coordinates))
                coordinates_forces.append((coordinates, forces))
51
        species, coordinates = torchani.utils.pad_coordinates(
52
            species_coordinates)
53
        _, energies = self.model((species, coordinates))
54
55
56
57
58
59
        energies = energies.sum()
        for coordinates, forces in coordinates_forces:
            derivative = torch.autograd.grad(energies, coordinates,
                                             retain_graph=True)[0]
            max_diff = (forces + derivative).abs().max().item()
            self.assertLess(max_diff, self.tolerance)
60
61


62
63
64
65
66
67
68
69
70
71
72
class TestForceASEComputer(TestForce):

    def setUp(self):
        super(TestForceASEComputer, self).setUp()
        self.aev_computer.neighborlist = torchani.ase.NeighborList()

    def transform(self, x):
        """To reduce the size of test cases for faster test speed"""
        return x[:3, ...]


73
74
if __name__ == '__main__':
    unittest.main()