nnp_training.py 14.8 KB
Newer Older
Gao, Xiang's avatar
Gao, Xiang committed
1
2
# -*- coding: utf-8 -*-
"""
Gao, Xiang's avatar
Gao, Xiang committed
3
4
.. _training-example:

Gao, Xiang's avatar
Gao, Xiang committed
5
6
7
Train Your Own Neural Network Potential
=======================================

8
9
10
This example shows how to use TorchANI to train a neural network potential
with the setup identical to NeuroChem. We will use the same configuration as
specified in `inputtrain.ipt`_
11
12
13
14
15
16
17

.. _`inputtrain.ipt`:
    https://github.com/aiqm/torchani/blob/master/torchani/resources/ani-1x_8x/inputtrain.ipt

.. note::
    TorchANI provide tools to run NeuroChem training config file `inputtrain.ipt`.
    See: :ref:`neurochem-training`.
Gao, Xiang's avatar
Gao, Xiang committed
18
19
20
"""

###############################################################################
21
# To begin with, let's first import the modules and setup devices we will use:
22

23
24
import torch
import torchani
Gao, Xiang's avatar
Gao, Xiang committed
25
import os
26
27
28
import math
import torch.utils.tensorboard
import tqdm
Gao, Xiang's avatar
Gao, Xiang committed
29

Ignacio Pickering's avatar
Ignacio Pickering committed
30
31
32
# helper function to convert energy unit from Hartree to kcal/mol
from torchani.units import hartree2kcalmol

33
34
# device to run the training
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Gao, Xiang's avatar
Gao, Xiang committed
35
36

###############################################################################
37
# Now let's setup constants and construct an AEV computer. These numbers could
38
39
40
41
# be found in `rHCNO-5.2R_16-3.5A_a4-8.params`
# The atomic self energies given in `sae_linfit.dat`_ are computed from ANI-1x
# dataset. These constants can be calculated for any given dataset if ``None``
# is provided as an argument to the object of :class:`EnergyShifter` class.
42
43
44
45
#
# .. note::
#
#   Besides defining these hyperparameters programmatically,
Gao, Xiang's avatar
Gao, Xiang committed
46
#   :mod:`torchani.neurochem` provide tools to read them from file.
47
48
49
50
51
#
# .. _rHCNO-5.2R_16-3.5A_a4-8.params:
#   https://github.com/aiqm/torchani/blob/master/torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params
# .. _sae_linfit.dat:
#   https://github.com/aiqm/torchani/blob/master/torchani/resources/ani-1x_8x/sae_linfit.dat
52

53
54
55
56
57
58
59
60
61
62
Rcr = 5.2000e+00
Rca = 3.5000e+00
EtaR = torch.tensor([1.6000000e+01], device=device)
ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device)
Zeta = torch.tensor([3.2000000e+01], device=device)
ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device)
EtaA = torch.tensor([8.0000000e+00], device=device)
ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device)
num_species = 4
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
63
energy_shifter = torchani.utils.EnergyShifter(None)
64
species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
65
66

###############################################################################
67
68
69
70
# Now let's setup datasets. These paths assumes the user run this script under
# the ``examples`` directory of TorchANI's repository. If you download this
# script, you should manually set the path of these files in your system before
# this script can run successfully.
71
72
73
74
75
76
#
# Also note that we need to subtracting energies by the self energies of all
# atoms for each molecule. This makes the range of energies in a reasonable
# range. The second argument defines how to convert species as a list of string
# to tensor, that is, for all supported chemical symbols, which is correspond to
# ``0``, which correspond to ``1``, etc.
Gao, Xiang's avatar
Gao, Xiang committed
77
78
79
80
81

try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
82
dspath = os.path.join(path, '../dataset/ani1-up_to_gdb4/ani_gdb_s01.h5')
Gao, Xiang's avatar
Gao, Xiang committed
83

84
batch_size = 2560
Gao, Xiang's avatar
Gao, Xiang committed
85

86
training, validation = torchani.data.load_ani_dataset(
87
    dspath, species_to_tensor, batch_size, rm_outlier=True, device=device,
88
    transform=[energy_shifter.subtract_from_dataset], split=[0.8, None])
89
90
print('Self atomic energies: ', energy_shifter.self_energies)

Gao, Xiang's avatar
Gao, Xiang committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
###############################################################################
# When iterating the dataset, we will get pairs of input and output
# ``(species_coordinates, properties)``, where ``species_coordinates`` is the
# input and ``properties`` is the output.
#
# ``species_coordinates`` is a list of species-coordinate pairs, with shape
# ``(N, Na)`` and ``(N, Na, 3)``. The reason for getting this type is, when
# loading the dataset and generating minibatches, the whole dataset are
# shuffled and each minibatch contains structures of molecules with a wide
# range of number of atoms. Molecules of different number of atoms are batched
# into single by padding. The way padding works is: adding ghost atoms, with
# species 'X', and do computations as if they were normal atoms. But when
# computing AEVs, atoms with species `X` would be ignored. To avoid computation
# wasting on padding atoms, minibatches are further splitted into chunks. Each
# chunk contains structures of molecules of similar size, which minimize the
# total number of padding atoms required to add. The input list
# ``species_coordinates`` contains chunks of that minibatch we are getting. The
# batching and chunking happens automatically, so the user does not need to
# worry how to construct chunks, but the user need to compute the energies for
# each chunk and concat them into single tensor.
#
# The output, i.e. ``properties`` is a dictionary holding each property. This
# allows us to extend TorchANI in the future to training forces and properties.
114
#
Gao, Xiang's avatar
Gao, Xiang committed
115
###############################################################################
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Now let's define atomic neural networks.

H_network = torch.nn.Sequential(
    torch.nn.Linear(384, 160),
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

C_network = torch.nn.Sequential(
    torch.nn.Linear(384, 144),
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
print(nn)
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
###############################################################################
# Initialize the weights and biases.
#
# .. note::
#   Pytorch default initialization for the weights and biases in linear layers
#   is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_
#   We initialize the weights similarly but from the normal distribution.
#   The biases were initialized to zero.
#
# .. _TORCH.NN.MODULES.LINEAR:
#   https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear


def init_params(m):
    if isinstance(m, torch.nn.Linear):
        torch.nn.init.kaiming_normal_(m.weight, a=1.0)
        torch.nn.init.zeros_(m.bias)


nn.apply(init_params)

Gao, Xiang's avatar
Gao, Xiang committed
182
###############################################################################
183
# Let's now create a pipeline of AEV Computer --> Neural Networks.
184
model = torchani.nn.Sequential(aev_computer, nn).to(device)
Gao, Xiang's avatar
Gao, Xiang committed
185

186
###############################################################################
187
188
189
# Now let's setup the optimizers. NeuroChem uses Adam with decoupled weight decay
# to updates the weights and Stochastic Gradient Descent (SGD) to update the biases.
# Moreover, we need to specify different weight decay rate for different layes.
190
191
192
193
194
195
196
197
198
199
200
#
# .. note::
#
#   The weight decay in `inputtrain.ipt`_ is named "l2", but it is actually not
#   L2 regularization. The confusion between L2 and weight decay is a common
#   mistake in deep learning.  See: `Decoupled Weight Decay Regularization`_
#   Also note that the weight decay only applies to weight in the training
#   of ANI models, not bias.
#
# .. _Decoupled Weight Decay Regularization:
#   https://arxiv.org/abs/1711.05101
201
202

AdamW = torchani.optim.AdamW([
203
    # H networks
204
    {'params': [H_network[0].weight]},
205
206
    {'params': [H_network[2].weight], 'weight_decay': 0.00001},
    {'params': [H_network[4].weight], 'weight_decay': 0.000001},
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    {'params': [H_network[6].weight]},
    # C networks
    {'params': [C_network[0].weight]},
    {'params': [C_network[2].weight], 'weight_decay': 0.00001},
    {'params': [C_network[4].weight], 'weight_decay': 0.000001},
    {'params': [C_network[6].weight]},
    # N networks
    {'params': [N_network[0].weight]},
    {'params': [N_network[2].weight], 'weight_decay': 0.00001},
    {'params': [N_network[4].weight], 'weight_decay': 0.000001},
    {'params': [N_network[6].weight]},
    # O networks
    {'params': [O_network[0].weight]},
    {'params': [O_network[2].weight], 'weight_decay': 0.00001},
    {'params': [O_network[4].weight], 'weight_decay': 0.000001},
    {'params': [O_network[6].weight]},
])

SGD = torch.optim.SGD([
    # H networks
    {'params': [H_network[0].bias]},
    {'params': [H_network[2].bias]},
229
    {'params': [H_network[4].bias]},
230
    {'params': [H_network[6].bias]},
231
232
233
234
    # C networks
    {'params': [C_network[0].bias]},
    {'params': [C_network[2].bias]},
    {'params': [C_network[4].bias]},
235
    {'params': [C_network[6].bias]},
236
237
238
239
    # N networks
    {'params': [N_network[0].bias]},
    {'params': [N_network[2].bias]},
    {'params': [N_network[4].bias]},
240
    {'params': [N_network[6].bias]},
241
242
243
244
    # O networks
    {'params': [O_network[0].bias]},
    {'params': [O_network[2].bias]},
    {'params': [O_network[4].bias]},
245
246
    {'params': [O_network[6].bias]},
], lr=1e-3)
Gao, Xiang's avatar
Gao, Xiang committed
247

248
###############################################################################
249
# Setting up a learning rate scheduler to do learning rate decay
250
251
AdamW_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(AdamW, factor=0.5, patience=100, threshold=0)
SGD_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(SGD, factor=0.5, patience=100, threshold=0)
252
253
254
255
256

###############################################################################
# Train the model by minimizing the MSE loss, until validation RMSE no longer
# improves during a certain number of steps, decay the learning rate and repeat
# the same process, stop until the learning rate is smaller than a threshold.
257
#
258
259
# We first read the checkpoint files to restart training. We use `latest.pt`
# to store current training state.
260
latest_checkpoint = 'latest.pt'
261
262
263
264
265

###############################################################################
# Resume training from previously saved checkpoints:
if os.path.isfile(latest_checkpoint):
    checkpoint = torch.load(latest_checkpoint)
266
267
268
269
270
    nn.load_state_dict(checkpoint['nn'])
    AdamW.load_state_dict(checkpoint['AdamW'])
    SGD.load_state_dict(checkpoint['SGD'])
    AdamW_scheduler.load_state_dict(checkpoint['AdamW_scheduler'])
    SGD_scheduler.load_state_dict(checkpoint['SGD_scheduler'])
271

272
273
274
275
276
277
278
279
280
281
282
283
284
###############################################################################
# During training, we need to validate on validation set and if validation error
# is better than the best, then save the new best model to a checkpoint


def validate():
    # run validation
    mse_sum = torch.nn.MSELoss(reduction='sum')
    total_mse = 0.0
    count = 0
    for batch_x, batch_y in validation:
        true_energies = batch_y['energies']
        predicted_energies = []
285
        atomic_properties = []
286
        for chunk_species, chunk_coordinates in batch_x:
287
288
289
290
291
            atomic_chunk = {'species': chunk_species, 'coordinates': chunk_coordinates}
            atomic_properties.append(atomic_chunk)

        atomic_properties = torchani.utils.pad_atomic_properties(atomic_properties)
        predicted_energies = model((atomic_properties['species'], atomic_properties['coordinates'])).energies
292
293
        total_mse += mse_sum(predicted_energies, true_energies).item()
        count += predicted_energies.shape[0]
Ignacio Pickering's avatar
Ignacio Pickering committed
294
    return hartree2kcalmol(math.sqrt(total_mse / count))
295
296


297
298
299
###############################################################################
# We will also use TensorBoard to visualize our training process
tensorboard = torch.utils.tensorboard.SummaryWriter()
Gao, Xiang's avatar
Gao, Xiang committed
300

Gao, Xiang's avatar
Gao, Xiang committed
301
###############################################################################
302
303
304
305
306
# Finally, we come to the training loop.
#
# In this tutorial, we are setting the maximum epoch to a very small number,
# only to make this demo terminate fast. For serious training, this should be
# set to a much larger value
307
308
mse = torch.nn.MSELoss(reduction='none')

309
print("training starting from epoch", AdamW_scheduler.last_epoch + 1)
Gao, Xiang's avatar
Gao, Xiang committed
310
max_epochs = 10
311
312
313
early_stopping_learning_rate = 1.0E-5
best_model_checkpoint = 'best.pt'

314
for _ in range(AdamW_scheduler.last_epoch + 1, max_epochs):
315
    rmse = validate()
316
    print('RMSE:', rmse, 'at epoch', AdamW_scheduler.last_epoch + 1)
317

318
    learning_rate = AdamW.param_groups[0]['lr']
319
320
321
322
323

    if learning_rate < early_stopping_learning_rate:
        break

    # checkpoint
324
    if AdamW_scheduler.is_better(rmse, AdamW_scheduler.best):
325
326
        torch.save(nn.state_dict(), best_model_checkpoint)

327
328
329
330
331
332
333
334
335
336
337
338
    AdamW_scheduler.step(rmse)
    SGD_scheduler.step(rmse)

    tensorboard.add_scalar('validation_rmse', rmse, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('best_validation_rmse', AdamW_scheduler.best, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('learning_rate', learning_rate, AdamW_scheduler.last_epoch)

    for i, (batch_x, batch_y) in tqdm.tqdm(
        enumerate(training),
        total=len(training),
        desc="epoch {}".format(AdamW_scheduler.last_epoch)
    ):
339
340
341
342

        true_energies = batch_y['energies']
        predicted_energies = []
        num_atoms = []
343
        atomic_properties = []
344

345
        for chunk_species, chunk_coordinates in batch_x:
346
347
            atomic_chunk = {'species': chunk_species, 'coordinates': chunk_coordinates}
            atomic_properties.append(atomic_chunk)
348
            num_atoms.append((chunk_species >= 0).to(true_energies.dtype).sum(dim=1))
349
350
351

        atomic_properties = torchani.utils.pad_atomic_properties(atomic_properties)
        predicted_energies = model((atomic_properties['species'], atomic_properties['coordinates'])).energies
352

353
        num_atoms = torch.cat(num_atoms)
354
        loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
355
356
357

        AdamW.zero_grad()
        SGD.zero_grad()
358
        loss.backward()
359
360
        AdamW.step()
        SGD.step()
361
362

        # write current batch loss to TensorBoard
363
        tensorboard.add_scalar('batch_loss', loss, AdamW_scheduler.last_epoch * len(training) + i)
364
365
366

    torch.save({
        'nn': nn.state_dict(),
367
368
369
370
        'AdamW': AdamW.state_dict(),
        'SGD': SGD.state_dict(),
        'AdamW_scheduler': AdamW_scheduler.state_dict(),
        'SGD_scheduler': SGD_scheduler.state_dict(),
371
    }, latest_checkpoint)