nnp_training.py 14 KB
Newer Older
Gao, Xiang's avatar
Gao, Xiang committed
1
2
# -*- coding: utf-8 -*-
"""
Gao, Xiang's avatar
Gao, Xiang committed
3
4
.. _training-example:

Gao, Xiang's avatar
Gao, Xiang committed
5
6
7
Train Your Own Neural Network Potential
=======================================

8
9
10
11
12
13
14
15
16
This example shows how to use TorchANI to train a neural network potential. We
will use the same configuration as specified as in `inputtrain.ipt`_

.. _`inputtrain.ipt`:
    https://github.com/aiqm/torchani/blob/master/torchani/resources/ani-1x_8x/inputtrain.ipt

.. note::
    TorchANI provide tools to run NeuroChem training config file `inputtrain.ipt`.
    See: :ref:`neurochem-training`.
Gao, Xiang's avatar
Gao, Xiang committed
17
18
19
"""

###############################################################################
20
# To begin with, let's first import the modules and setup devices we will use:
21
22
import torch
import torchani
Gao, Xiang's avatar
Gao, Xiang committed
23
import os
24
25
26
import math
import torch.utils.tensorboard
import tqdm
Gao, Xiang's avatar
Gao, Xiang committed
27

28
29
# device to run the training
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Gao, Xiang's avatar
Gao, Xiang committed
30
31

###############################################################################
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Now let's setup constants and construct an AEV computer. These numbers could
# be found in `rHCNO-5.2R_16-3.5A_a4-8.params`_ and `sae_linfit.dat`_
#
# .. note::
#
#   Besides defining these hyperparameters programmatically,
#   :mod:`torchani.neurochem` provide tools to read them from file. See also
#   :ref:`training-example-ignite` for an example of usage.
#
# .. _rHCNO-5.2R_16-3.5A_a4-8.params:
#   https://github.com/aiqm/torchani/blob/master/torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params
# .. _sae_linfit.dat:
#   https://github.com/aiqm/torchani/blob/master/torchani/resources/ani-1x_8x/sae_linfit.dat
Rcr = 5.2000e+00
Rca = 3.5000e+00
EtaR = torch.tensor([1.6000000e+01], device=device)
ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device)
Zeta = torch.tensor([3.2000000e+01], device=device)
ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device)
EtaA = torch.tensor([8.0000000e+00], device=device)
ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device)
num_species = 4
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
energy_shifter = torchani.utils.EnergyShifter([
    -0.600952980000,  # H
    -38.08316124000,  # C
    -54.70775770000,  # N
    -75.19446356000,  # O
])
species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HCNO')


###############################################################################
65
66
67
68
# Now let's setup datasets. These paths assumes the user run this script under
# the ``examples`` directory of TorchANI's repository. If you download this
# script, you should manually set the path of these files in your system before
# this script can run successfully.
69
70
71
72
73
74
#
# Also note that we need to subtracting energies by the self energies of all
# atoms for each molecule. This makes the range of energies in a reasonable
# range. The second argument defines how to convert species as a list of string
# to tensor, that is, for all supported chemical symbols, which is correspond to
# ``0``, which correspond to ``1``, etc.
Gao, Xiang's avatar
Gao, Xiang committed
75
76
77
78
79

try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
80
dspath = os.path.join(path, '../dataset/ani1-up_to_gdb4/ani_gdb_s01.h5')
Gao, Xiang's avatar
Gao, Xiang committed
81

82
batch_size = 2560
Gao, Xiang's avatar
Gao, Xiang committed
83

84
85
86
training, validation = torchani.data.load_ani_dataset(
    dspath, species_to_tensor, batch_size, device=device,
    transform=[energy_shifter.subtract_from_dataset], split=[0.8, None])
Gao, Xiang's avatar
Gao, Xiang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

###############################################################################
# When iterating the dataset, we will get pairs of input and output
# ``(species_coordinates, properties)``, where ``species_coordinates`` is the
# input and ``properties`` is the output.
#
# ``species_coordinates`` is a list of species-coordinate pairs, with shape
# ``(N, Na)`` and ``(N, Na, 3)``. The reason for getting this type is, when
# loading the dataset and generating minibatches, the whole dataset are
# shuffled and each minibatch contains structures of molecules with a wide
# range of number of atoms. Molecules of different number of atoms are batched
# into single by padding. The way padding works is: adding ghost atoms, with
# species 'X', and do computations as if they were normal atoms. But when
# computing AEVs, atoms with species `X` would be ignored. To avoid computation
# wasting on padding atoms, minibatches are further splitted into chunks. Each
# chunk contains structures of molecules of similar size, which minimize the
# total number of padding atoms required to add. The input list
# ``species_coordinates`` contains chunks of that minibatch we are getting. The
# batching and chunking happens automatically, so the user does not need to
# worry how to construct chunks, but the user need to compute the energies for
# each chunk and concat them into single tensor.
#
# The output, i.e. ``properties`` is a dictionary holding each property. This
# allows us to extend TorchANI in the future to training forces and properties.
111
112


Gao, Xiang's avatar
Gao, Xiang committed
113
###############################################################################
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Now let's define atomic neural networks.

H_network = torch.nn.Sequential(
    torch.nn.Linear(384, 160),
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

C_network = torch.nn.Sequential(
    torch.nn.Linear(384, 144),
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
print(nn)
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
###############################################################################
# Initialize the weights and biases.
#
# .. note::
#   Pytorch default initialization for the weights and biases in linear layers
#   is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_
#   We initialize the weights similarly but from the normal distribution.
#   The biases were initialized to zero.
#
# .. _TORCH.NN.MODULES.LINEAR:
#   https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear


def init_params(m):
    if isinstance(m, torch.nn.Linear):
        torch.nn.init.kaiming_normal_(m.weight, a=1.0)
        torch.nn.init.zeros_(m.bias)


nn.apply(init_params)

Gao, Xiang's avatar
Gao, Xiang committed
180
###############################################################################
181
182
# Let's now create a pipeline of AEV Computer --> Neural Networks.
model = torch.nn.Sequential(aev_computer, nn).to(device)
Gao, Xiang's avatar
Gao, Xiang committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
###############################################################################
# Now let's setup the optimizer. We need to specify different weight decay rate
# for different parameters. Since PyTorch does not have correct implementation
# of weight decay right now, we provide the correct implementation at TorchANI.
#
# .. note::
#
#   The weight decay in `inputtrain.ipt`_ is named "l2", but it is actually not
#   L2 regularization. The confusion between L2 and weight decay is a common
#   mistake in deep learning.  See: `Decoupled Weight Decay Regularization`_
#   Also note that the weight decay only applies to weight in the training
#   of ANI models, not bias.
#
197
198
199
200
201
202
203
# .. warning::
#
#   Currently TorchANI training with weight decay can not reproduce the training
#   result of NeuroChem with the same training setup. If you really want to use
#   weight decay, consider smaller rates and and make sure you do enough validation
#   to check if you get expected result.
#
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# .. _Decoupled Weight Decay Regularization:
#   https://arxiv.org/abs/1711.05101
optimizer = torchani.optim.AdamW([
    # H networks
    {'params': [H_network[0].weight], 'weight_decay': 0.0001},
    {'params': [H_network[0].bias]},
    {'params': [H_network[2].weight], 'weight_decay': 0.00001},
    {'params': [H_network[2].bias]},
    {'params': [H_network[4].weight], 'weight_decay': 0.000001},
    {'params': [H_network[4].bias]},
    {'params': H_network[6].parameters()},
    # C networks
    {'params': [C_network[0].weight], 'weight_decay': 0.0001},
    {'params': [C_network[0].bias]},
    {'params': [C_network[2].weight], 'weight_decay': 0.00001},
    {'params': [C_network[2].bias]},
    {'params': [C_network[4].weight], 'weight_decay': 0.000001},
    {'params': [C_network[4].bias]},
    {'params': C_network[6].parameters()},
    # N networks
    {'params': [N_network[0].weight], 'weight_decay': 0.0001},
    {'params': [N_network[0].bias]},
    {'params': [N_network[2].weight], 'weight_decay': 0.00001},
    {'params': [N_network[2].bias]},
    {'params': [N_network[4].weight], 'weight_decay': 0.000001},
    {'params': [N_network[4].bias]},
    {'params': N_network[6].parameters()},
    # O networks
    {'params': [O_network[0].weight], 'weight_decay': 0.0001},
    {'params': [O_network[0].bias]},
    {'params': [O_network[2].weight], 'weight_decay': 0.00001},
    {'params': [O_network[2].bias]},
    {'params': [O_network[4].weight], 'weight_decay': 0.000001},
    {'params': [O_network[4].bias]},
    {'params': O_network[6].parameters()},
])
Gao, Xiang's avatar
Gao, Xiang committed
240

241
###############################################################################
242
243
244
245
246
247
248
# Setting up a learning rate scheduler to do learning rate decay
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=100, threshold=0)

###############################################################################
# Train the model by minimizing the MSE loss, until validation RMSE no longer
# improves during a certain number of steps, decay the learning rate and repeat
# the same process, stop until the learning rate is smaller than a threshold.
249
#
250
251
# We first read the checkpoint files to restart training. We use `latest.pt`
# to store current training state.
252
latest_checkpoint = 'latest.pt'
253
254
255
256
257
258
259
260

###############################################################################
# Resume training from previously saved checkpoints:
if os.path.isfile(latest_checkpoint):
    checkpoint = torch.load(latest_checkpoint)
    model.load_state_dict(checkpoint['nn'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    scheduler.load_state_dict(checkpoint['scheduler'])
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
###############################################################################
# During training, we need to validate on validation set and if validation error
# is better than the best, then save the new best model to a checkpoint


# helper function to convert energy unit from Hartree to kcal/mol
def hartree2kcal(x):
    return 627.509 * x


def validate():
    # run validation
    mse_sum = torch.nn.MSELoss(reduction='sum')
    total_mse = 0.0
    count = 0
    for batch_x, batch_y in validation:
        true_energies = batch_y['energies']
        predicted_energies = []
        for chunk_species, chunk_coordinates in batch_x:
            _, chunk_energies = model((chunk_species, chunk_coordinates))
            predicted_energies.append(chunk_energies)
        predicted_energies = torch.cat(predicted_energies)
        total_mse += mse_sum(predicted_energies, true_energies).item()
        count += predicted_energies.shape[0]
    return hartree2kcal(math.sqrt(total_mse / count))


289
290
291
###############################################################################
# We will also use TensorBoard to visualize our training process
tensorboard = torch.utils.tensorboard.SummaryWriter()
Gao, Xiang's avatar
Gao, Xiang committed
292

Gao, Xiang's avatar
Gao, Xiang committed
293
###############################################################################
294
295
296
297
298
# Finally, we come to the training loop.
#
# In this tutorial, we are setting the maximum epoch to a very small number,
# only to make this demo terminate fast. For serious training, this should be
# set to a much larger value
299
300
mse = torch.nn.MSELoss(reduction='none')

301
302
303
304
305
306
307
print("training starting from epoch", scheduler.last_epoch + 1)
max_epochs = 200
early_stopping_learning_rate = 1.0E-5
best_model_checkpoint = 'best.pt'

for _ in range(scheduler.last_epoch + 1, max_epochs):
    rmse = validate()
308
    print('RMSE:', rmse, 'at epoch', scheduler.last_epoch + 1)
309

310
311
312
313
314
    learning_rate = optimizer.param_groups[0]['lr']

    if learning_rate < early_stopping_learning_rate:
        break

315
316
317
    tensorboard.add_scalar('validation_rmse', rmse, scheduler.last_epoch + 1)
    tensorboard.add_scalar('best_validation_rmse', scheduler.best, scheduler.last_epoch + 1)
    tensorboard.add_scalar('learning_rate', learning_rate, scheduler.last_epoch + 1)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    # checkpoint
    if scheduler.is_better(rmse, scheduler.best):
        torch.save(nn.state_dict(), best_model_checkpoint)

    scheduler.step(rmse)

    for i, (batch_x, batch_y) in tqdm.tqdm(enumerate(training), total=len(training)):
        true_energies = batch_y['energies']
        predicted_energies = []
        num_atoms = []
        for chunk_species, chunk_coordinates in batch_x:
            num_atoms.append((chunk_species >= 0).sum(dim=1))
            _, chunk_energies = model((chunk_species, chunk_coordinates))
            predicted_energies.append(chunk_energies)
        num_atoms = torch.cat(num_atoms).to(true_energies.dtype)
        predicted_energies = torch.cat(predicted_energies)
        loss = (mse(predicted_energies, true_energies) / num_atoms).mean()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # write current batch loss to TensorBoard
        tensorboard.add_scalar('batch_loss', loss, scheduler.last_epoch * len(training) + i)

    torch.save({
        'nn': nn.state_dict(),
        'optimizer': optimizer.state_dict(),
        'scheduler': scheduler.state_dict(),
    }, latest_checkpoint)