test_forces.py 4.03 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
import random
7
8
9
10
11
12
13

path = os.path.dirname(os.path.realpath(__file__))
N = 97


class TestForce(unittest.TestCase):

14
    def setUp(self):
15
        self.tolerance = 1e-5
16
        builtins = torchani.neurochem.Builtins()
17
        self.aev_computer = builtins.aev_computer
18
        nnp = builtins.models[0]
19
20
        self.model = torch.nn.Sequential(self.aev_computer, nnp)

21
22
23
    def random_skip(self):
        return False

24
25
    def transform(self, x):
        return x
26
27
28

    def testIsomers(self):
        for i in range(N):
29
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
30
31
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces = pickle.load(f)
32
33
34
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                forces = torch.from_numpy(forces)
35
36
37
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
Gao, Xiang's avatar
Gao, Xiang committed
38
                coordinates.requires_grad_(True)
39
40
41
42
43
44
45
46
47
                _, energies = self.model((species, coordinates))
                derivative = torch.autograd.grad(energies.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, self.tolerance)

    def testPadding(self):
        species_coordinates = []
        coordinates_forces = []
48
        for i in range(N):
49
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
50
51
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, forces = pickle.load(f)
52
53
54
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                forces = torch.from_numpy(forces)
55
56
57
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                forces = self.transform(forces)
Gao, Xiang's avatar
Gao, Xiang committed
58
                coordinates.requires_grad_(True)
59
60
                species_coordinates.append((species, coordinates))
                coordinates_forces.append((coordinates, forces))
61
        species, coordinates = torchani.utils.pad_coordinates(
62
            species_coordinates)
63
        _, energies = self.model((species, coordinates))
64
65
66
67
68
69
        energies = energies.sum()
        for coordinates, forces in coordinates_forces:
            derivative = torch.autograd.grad(energies, coordinates,
                                             retain_graph=True)[0]
            max_diff = (forces + derivative).abs().max().item()
            self.assertLess(max_diff, self.tolerance)
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, forces in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float) \
                                   .requires_grad_(True)
                species = torch.from_numpy(species)
                forces = torch.from_numpy(forces).to(torch.float)
                _, energies = self.model((species, coordinates))
                derivative = torch.autograd.grad(energies.sum(),
                                                 coordinates)[0]
                max_diff = (forces + derivative).abs().max().item()
                self.assertLess(max_diff, self.tolerance)

88

89
90
91
92
93
94
95
96
class TestForceASEComputer(TestForce):

    def setUp(self):
        super(TestForceASEComputer, self).setUp()
        self.aev_computer.neighborlist = torchani.ase.NeighborList()

    def transform(self, x):
        """To reduce the size of test cases for faster test speed"""
97
98
99
100
101
        return x[:2, ...]

    def random_skip(self):
        """To reduce the size of test cases for faster test speed"""
        return random.random() < 0.95
102
103


104
105
if __name__ == '__main__':
    unittest.main()