README.md 5.31 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
[build-image]: https://travis-ci.org/rusty1s/pytorch_spline_conv.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_spline_conv
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
8
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
15

rusty1s's avatar
bugfix  
rusty1s committed
16
17
18
19
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
20
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
21
22
23

## Installation

rusty1s's avatar
rusty1s committed
24
Ensure that at least PyTorch 1.0.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
25
26
27

```
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
28
>>> 1.0.0
rusty1s's avatar
rusty1s committed
29
30
31
32
33

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
34
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
35
36
```

rusty1s's avatar
bugfix  
rusty1s committed
37
38
39
Then run:

```
rusty1s's avatar
rusty1s committed
40
pip install torch-spline-conv
rusty1s's avatar
bugfix  
rusty1s committed
41
42
```

rusty1s's avatar
rusty1s committed
43
If you are running into any installation problems, please create an [issue](https://github.com/rusty1s/pytorch_spline_conv/issues).
rusty1s's avatar
rusty1s committed
44
Be sure to import `torch` first before using this package to resolve symbols the dynamic linker must see.
rusty1s's avatar
rusty1s committed
45

rusty1s's avatar
bugfix  
rusty1s committed
46
47
48
## Usage

```python
rusty1s's avatar
rusty1s committed
49
from torch_spline_conv import SplineConv
rusty1s's avatar
bugfix  
rusty1s committed
50

rusty1s's avatar
rusty1s committed
51
out = SplineConv.apply(x,
rusty1s's avatar
typo  
rusty1s committed
52
53
54
55
56
57
                       edge_index,
                       pseudo,
                       weight,
                       kernel_size,
                       is_open_spline,
                       degree=1,
rusty1s's avatar
rusty1s committed
58
                       norm=True,
rusty1s's avatar
typo  
rusty1s committed
59
60
                       root_weight=None,
                       bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
61
62
```

rusty1s's avatar
typo  
rusty1s committed
63
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
64
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
65
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
66
</p>
rusty1s's avatar
bugfix  
rusty1s committed
67
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
68
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
69

Matthias Fey's avatar
Matthias Fey committed
70
71
72
73
74
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
75
76
### Parameters

rusty1s's avatar
rusty1s committed
77
* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
rusty1s's avatar
rusty1s committed
78
79
80
81
82
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
rusty1s's avatar
rusty1s committed
83
* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
rusty1s's avatar
rusty1s committed
84
* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
rusty1s's avatar
rusty1s committed
85
86
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
87
88
89

### Returns

Matthias Fey's avatar
Matthias Fey committed
90
* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
91
92
93
94
95

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
96
from torch_spline_conv import SplineConv
rusty1s's avatar
bugfix  
rusty1s committed
97

rusty1s's avatar
rusty1s committed
98
x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
rusty1s's avatar
rusty1s committed
99
100
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
101
102
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
rusty1s's avatar
rusty1s committed
103
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
rusty1s's avatar
rusty1s committed
104
degree = 1  # B-spline degree of 1
rusty1s's avatar
rusty1s committed
105
norm = True  # Normalize output by node degree.
rusty1s's avatar
rusty1s committed
106
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
107
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
108

rusty1s's avatar
rusty1s committed
109
out = SplineConv.apply(x, edge_index, pseudo, weight, kernel_size,
rusty1s's avatar
typo  
rusty1s committed
110
                       is_open_spline, degree, norm, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
111

rusty1s's avatar
rename  
rusty1s committed
112
print(out.size())
rusty1s's avatar
typo  
rusty1s committed
113
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
114
115
```

rusty1s's avatar
rusty1s committed
116
117
118
119
120
121
122
123
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
Matthias Fey's avatar
Matthias Fey committed
124
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
rusty1s's avatar
rusty1s committed
125
126
127
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
128
129
130
131
132
133

## Running tests

```
python setup.py test
```