"vscode:/vscode.git/clone" did not exist on "de227b620f8b719072b9823f3d9f42123ee2106b"
test_conv.py 4.89 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from itertools import product

import pytest
import torch
from torch.autograd import Variable, gradcheck
from torch_spline_conv import spline_conv
from torch_spline_conv.utils.ffi import implemented_degrees

from .tensor import tensors

tests = [{
    'src': [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]],
    'edge_index': [[0, 0, 0, 0], [1, 2, 3, 4]],
    'pseudo': [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]],
    'weight': [
        [[0.5], [1]],
        [[1.5], [2]],
        [[2.5], [3]],
        [[3.5], [4]],
        [[4.5], [5]],
        [[5.5], [6]],
        [[6.5], [7]],
        [[7.5], [8]],
        [[8.5], [9]],
        [[9.5], [10]],
        [[10.5], [11]],
        [[11.5], [12]],
    ],
    'kernel_size': [3, 4],
    'is_open_spline': [1, 0],
    'root_weight': [[12.5], [13]],
    'bias': [1],
    'output': [
        [1 + 12.5 * 9 + 13 * 10 + (8.5 + 40.5 + 107.5 + 101.5) / 4],
        [1 + 12.5 * 1 + 13 * 2],
        [1 + 12.5 * 3 + 13 * 4],
        [1 + 12.5 * 5 + 13 * 6],
        [1 + 12.5 * 7 + 13 * 8],
    ]
}]


@pytest.mark.parametrize('tensor,i', product(tensors, range(len(tests))))
def test_spline_conv_forward_cpu(tensor, i):
    data = tests[i]

    src = getattr(torch, tensor)(data['src'])
    edge_index = torch.LongTensor(data['edge_index'])
    pseudo = getattr(torch, tensor)(data['pseudo'])
    weight = getattr(torch, tensor)(data['weight'])
    kernel_size = torch.LongTensor(data['kernel_size'])
    is_open_spline = torch.ByteTensor(data['is_open_spline'])
    root_weight = getattr(torch, tensor)(data['root_weight'])
    bias = getattr(torch, tensor)(data['bias'])

    output = spline_conv(src, edge_index, pseudo, weight, kernel_size,
                         is_open_spline, 1, root_weight, bias)
    assert output.tolist() == data['output']


@pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
@pytest.mark.parametrize('tensor,i', product(tensors, range(len(tests))))
rusty1s's avatar
rusty1s committed
63
def test_spline_conv_forward_gpu(tensor, i):  # pragma: no cover
rusty1s's avatar
rusty1s committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    data = tests[i]

    src = getattr(torch.cuda, tensor)(data['src'])
    edge_index = torch.cuda.LongTensor(data['edge_index'])
    pseudo = getattr(torch.cuda, tensor)(data['pseudo'])
    weight = getattr(torch.cuda, tensor)(data['weight'])
    kernel_size = torch.cuda.LongTensor(data['kernel_size'])
    is_open_spline = torch.cuda.ByteTensor(data['is_open_spline'])
    root_weight = getattr(torch.cuda, tensor)(data['root_weight'])
    bias = getattr(torch.cuda, tensor)(data['bias'])

    output = spline_conv(src, edge_index, pseudo, weight, kernel_size,
                         is_open_spline, 1, root_weight, bias)
    assert output.cpu().tolist() == data['output']


@pytest.mark.parametrize('degree', implemented_degrees.keys())
def test_spline_basis_backward_cpu(degree):
    src = torch.DoubleTensor(3, 2).uniform_(-1, 1)
    edge_index = torch.LongTensor([[0, 1, 1, 2], [1, 0, 2, 1]])
    pseudo = torch.DoubleTensor(4, 3).uniform_(0, 1)
    weight = torch.DoubleTensor(125, 2, 4).uniform_(-1, 1)
    kernel_size = torch.LongTensor([5, 5, 5])
    is_open_spline = torch.ByteTensor([1, 0, 1])
    root_weight = torch.DoubleTensor(2, 4).uniform_(-1, 1)
    bias = torch.DoubleTensor(4).uniform_(-1, 1)

    src = Variable(src, requires_grad=True)
    pseudo = Variable(pseudo, requires_grad=True)
    weight = Variable(weight, requires_grad=True)
    root_weight = Variable(root_weight, requires_grad=True)
    bias = Variable(bias, requires_grad=True)

    def op(src, pseudo, weight, root_weight, bias):
        return spline_conv(src, edge_index, pseudo, weight, kernel_size,
                           is_open_spline, degree, root_weight, bias)

    data = (src, pseudo, weight, root_weight, bias)
    assert gradcheck(op, data, eps=1e-6, atol=1e-4) is True


@pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
@pytest.mark.parametrize('degree', [2])
rusty1s's avatar
rusty1s committed
107
def test_spline_basis_backward_gpu(degree):  # pragma: no cover
rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    src = torch.cuda.DoubleTensor(3, 2).uniform_(-1, 1)
    edge_index = torch.cuda.LongTensor([[0, 1, 1, 2], [1, 0, 2, 1]])
    pseudo = torch.cuda.DoubleTensor(4, 3).uniform_(0, 1)
    weight = torch.cuda.DoubleTensor(125, 2, 4).uniform_(-1, 1)
    kernel_size = torch.cuda.LongTensor([5, 5, 5])
    is_open_spline = torch.cuda.ByteTensor([1, 0, 1])
    root_weight = torch.cuda.DoubleTensor(2, 4).uniform_(-1, 1)
    bias = torch.cuda.DoubleTensor(4).uniform_(-1, 1)

    src = Variable(src, requires_grad=False)
    pseudo = Variable(pseudo, requires_grad=True)
    weight = Variable(weight, requires_grad=False)
    root_weight = Variable(root_weight, requires_grad=False)
    bias = Variable(bias, requires_grad=False)

    def op(src, pseudo, weight, root_weight, bias):
        return spline_conv(src, edge_index, pseudo, weight, kernel_size,
                           is_open_spline, degree, root_weight, bias)

    data = (src, pseudo, weight, root_weight, bias)
    assert gradcheck(op, data, eps=1e-6, atol=1e-4) is True