test_conv.py 5.04 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# import pytest
# import torch
# from torch.autograd import Variable, gradcheck
# from torch_spline_conv import spline_conv
# from torch_spline_conv.functions.spline_weighting import SplineWeighting
# from torch_spline_conv.functions.ffi import implemented_degrees

# from .utils import tensors, Tensor

# @pytest.mark.parametrize('tensor', tensors)
# def test_spline_conv_cpu(tensor):
#     x = Tensor(tensor, [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]])
#     edge_index = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]])
#     pseudo = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]]
#     pseudo = Tensor(tensor, pseudo)
rusty1s's avatar
linting  
rusty1s committed
16
#    weight = torch.arange(0.5, 0.5 * 25, step=0.5, out=x.new()).view(12, 2, 1)
rusty1s's avatar
rusty1s committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#     kernel_size = torch.LongTensor([3, 4])
#     is_open_spline = torch.ByteTensor([1, 0])
#     root_weight = torch.arange(12.5, 13.5, step=0.5, out=x.new()).view(2, 1)
#     bias = Tensor(tensor, [1])

#     output = spline_conv(x, edge_index, pseudo, weight, kernel_size,
#                          is_open_spline, 1, root_weight, bias)

#     edgewise_output = [
#         1 * 0.25 * (0.5 + 1.5 + 4.5 + 5.5) + 2 * 0.25 * (1 + 2 + 5 + 6),
#         3 * 0.25 * (1.5 + 2.5 + 5.5 + 6.5) + 4 * 0.25 * (2 + 3 + 6 + 7),
#         5 * 0.25 * (6.5 + 7.5 + 10.5 + 11.5) + 6 * 0.25 * (7 + 8 + 11 + 12),
#         7 * 0.25 * (7.5 + 4.5 + 11.5 + 8.5) + 8 * 0.25 * (8 + 5 + 12 + 9),
#     ]

#     expected_output = [
#         [1 + 12.5 * 9 + 13 * 10 + sum(edgewise_output) / 4],
#         [1 + 12.5 * 1 + 13 * 2],
#         [1 + 12.5 * 3 + 13 * 4],
#         [1 + 12.5 * 5 + 13 * 6],
#         [1 + 12.5 * 7 + 13 * 8],
#     ]

#     assert output.tolist() == expected_output

#     x, weight, pseudo = Variable(x), Variable(weight), Variable(pseudo)
#     root_weight, bias = Variable(root_weight), Variable(bias)

#     output = spline_conv(x, edge_index, pseudo, weight, kernel_size,
#                          is_open_spline, 1, root_weight, bias)

#     assert output.data.tolist() == expected_output

# def test_spline_weighting_backward_cpu():
#     for degree in implemented_degrees.keys():
#         kernel_size = torch.LongTensor([5, 5, 5])
#         is_open_spline = torch.ByteTensor([1, 0, 1])
#         op = SplineWeighting(kernel_size, is_open_spline, degree)

#         x = torch.DoubleTensor(16, 2).uniform_(-1, 1)
#         x = Variable(x, requires_grad=True)
#         pseudo = torch.DoubleTensor(16, 3).uniform_(0, 1)
#         pseudo = Variable(pseudo, requires_grad=True)
#         weight = torch.DoubleTensor(25, 2, 4).uniform_(-1, 1)
#         weight = Variable(weight, requires_grad=True)

rusty1s's avatar
linting  
rusty1s committed
63
#        assert gradcheck(op, (x, pseudo, weight), eps=1e-6, atol=1e-4) is True
rusty1s's avatar
rusty1s committed
64
65
66
67
68
69
70
71

# @pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
# @pytest.mark.parametrize('tensor', tensors)
# def test_spline_conv_gpu(tensor):  # pragma: no cover
#     x = Tensor(tensor, [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]])
#     edge_index = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]])
#     pseudo = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]]
#     pseudo = Tensor(tensor, pseudo)
rusty1s's avatar
linting  
rusty1s committed
72
#    weight = torch.arange(0.5, 0.5 * 25, step=0.5, out=x.new()).view(12, 2, 1)
rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#     kernel_size = torch.LongTensor([3, 4])
#     is_open_spline = torch.ByteTensor([1, 0])
#     root_weight = torch.arange(12.5, 13.5, step=0.5, out=x.new()).view(2, 1)
#     bias = Tensor(tensor, [1])

#     expected_output = spline_conv(x, edge_index, pseudo, weight, kernel_size,
#                                   is_open_spline, 1, root_weight, bias)

#     x, edge_index, pseudo = x.cuda(), edge_index.cuda(), pseudo.cuda()
#     weight, kernel_size = weight.cuda(), kernel_size.cuda()
#     is_open_spline, root_weight = is_open_spline.cuda(), root_weight.cuda()
#     bias = bias.cuda()

#     output = spline_conv(x, edge_index, pseudo, weight, kernel_size,
#                          is_open_spline, 1, root_weight, bias)
#     assert output.cpu().tolist() == expected_output.tolist()

#     x, weight, pseudo = Variable(x), Variable(weight), Variable(pseudo)
#     root_weight, bias = Variable(root_weight), Variable(bias)

#     output = spline_conv(x, edge_index, pseudo, weight, kernel_size,
#                          is_open_spline, 1, root_weight, bias)

#     assert output.data.cpu().tolist() == expected_output.tolist()

# @pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
# def test_spline_weighting_backward_gpu():  # pragma: no cover
#     for degree in implemented_degrees.keys():
#         kernel_size = torch.cuda.LongTensor([5, 5, 5])
#         is_open_spline = torch.cuda.ByteTensor([1, 0, 1])
#         op = SplineWeighting(kernel_size, is_open_spline, degree)

#         x = torch.cuda.DoubleTensor(16, 2).uniform_(-1, 1)
#         x = Variable(x, requires_grad=True)
#         pseudo = torch.cuda.DoubleTensor(16, 3).uniform_(0, 1)
#         pseudo = Variable(pseudo, requires_grad=False)  # TODO
#         weight = torch.cuda.DoubleTensor(25, 2, 4).uniform_(-1, 1)
#         weight = Variable(weight, requires_grad=True)

rusty1s's avatar
linting  
rusty1s committed
112
#        assert gradcheck(op, (x, pseudo, weight), eps=1e-6, atol=1e-4) is True