README.md 6.96 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
[build-image]: https://travis-ci.org/rusty1s/pytorch_spline_conv.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_spline_conv
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
8
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
15

rusty1s's avatar
bugfix  
rusty1s committed
16
17
18
19
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
20
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
21
22
23

## Installation

rusty1s's avatar
rusty1s committed
24
25
26
### Binaries

We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://pytorch-geometric.com/whl).
rusty1s's avatar
rusty1s committed
27

rusty1s's avatar
rusty1s committed
28
#### PyTorch 1.7.0
rusty1s's avatar
rusty1s committed
29

rusty1s's avatar
rusty1s committed
30
To install the binaries for PyTorch 1.7.0, simply run
rusty1s's avatar
rusty1s committed
31
32

```
rusty1s's avatar
rusty1s committed
33
pip install torch-spline-conv==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.7.0.html
rusty1s's avatar
rusty1s committed
34
35
```

rusty1s's avatar
rusty1s committed
36
where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101`, `cu102`, or `cu110` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
37

rusty1s's avatar
rusty1s committed
38
39
40
41
42
|             | `cpu` | `cu92` | `cu101` | `cu102` | `cu110` |
|-------------|-------|--------|---------|---------|---------|
| **Linux**   | ✅    | ✅     | ✅      | ✅      | ✅      |
| **Windows** | ✅    | ❌     | ✅      | ✅      | ✅      |
| **macOS**   | ✅    |        |         |         |         |
rusty1s's avatar
rusty1s committed
43

rusty1s's avatar
rusty1s committed
44
#### PyTorch 1.6.0
rusty1s's avatar
rusty1s committed
45

rusty1s's avatar
rusty1s committed
46
To install the binaries for PyTorch 1.6.0, simply run
rusty1s's avatar
rusty1s committed
47
48

```
rusty1s's avatar
rusty1s committed
49
pip install torch-spline-conv==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.6.0.html
rusty1s's avatar
rusty1s committed
50
51
52
53
54
55
56
57
58
59
```

where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101` or `cu102` depending on your PyTorch installation.

|             | `cpu` | `cu92` | `cu101` | `cu102` |
|-------------|-------|--------|---------|---------|
| **Linux**   | ✅    | ✅     | ✅      | ✅      |
| **Windows** | ✅    | ❌     | ✅      | ✅      |
| **macOS**   | ✅    |        |         |         |

rusty1s's avatar
rusty1s committed
60
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0 and PyTorch 1.5.0 (following the same procedure).
rusty1s's avatar
rusty1s committed
61
62
63
64

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
65
66
67

```
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
68
>>> 1.4.0
rusty1s's avatar
rusty1s committed
69
70
71
72
73

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
74
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
75
76
```

rusty1s's avatar
bugfix  
rusty1s committed
77
78
79
Then run:

```
rusty1s's avatar
rusty1s committed
80
pip install torch-spline-conv
rusty1s's avatar
bugfix  
rusty1s committed
81
82
```

rusty1s's avatar
rusty1s committed
83
84
85
86
87
88
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
rusty1s's avatar
rusty1s committed
89

rusty1s's avatar
bugfix  
rusty1s committed
90
91
92
## Usage

```python
rusty1s's avatar
rusty1s committed
93
94
95
96
97
98
99
100
101
102
103
104
from torch_spline_conv import spline_conv

out = spline_conv(x,
                  edge_index,
                  pseudo,
                  weight,
                  kernel_size,
                  is_open_spline,
                  degree=1,
                  norm=True,
                  root_weight=None,
                  bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
105
106
```

rusty1s's avatar
typo  
rusty1s committed
107
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
108
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
109
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
110
</p>
rusty1s's avatar
bugfix  
rusty1s committed
111
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
112
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
113

Matthias Fey's avatar
Matthias Fey committed
114
115
116
117
118
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
119
120
### Parameters

rusty1s's avatar
rusty1s committed
121
* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
rusty1s's avatar
rusty1s committed
122
123
124
125
126
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
rusty1s's avatar
rusty1s committed
127
* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
rusty1s's avatar
rusty1s committed
128
* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
rusty1s's avatar
rusty1s committed
129
130
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
131
132
133

### Returns

Matthias Fey's avatar
Matthias Fey committed
134
* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
135
136
137
138
139

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
140
from torch_spline_conv import spline_conv
rusty1s's avatar
bugfix  
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
rusty1s's avatar
rusty1s committed
143
144
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
145
146
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
rusty1s's avatar
rusty1s committed
147
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
rusty1s's avatar
rusty1s committed
148
degree = 1  # B-spline degree of 1
rusty1s's avatar
rusty1s committed
149
norm = True  # Normalize output by node degree.
rusty1s's avatar
rusty1s committed
150
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
151
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
152

rusty1s's avatar
rusty1s committed
153
154
out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
                  is_open_spline, degree, norm, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
155

rusty1s's avatar
rename  
rusty1s committed
156
print(out.size())
rusty1s's avatar
typo  
rusty1s committed
157
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
158
159
```

rusty1s's avatar
rusty1s committed
160
161
162
163
164
165
166
167
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
Matthias Fey's avatar
Matthias Fey committed
168
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
rusty1s's avatar
rusty1s committed
169
170
171
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
172
173
174
175
176
177

## Running tests

```
python setup.py test
```
rusty1s's avatar
rusty1s committed
178
179
180
181
182
183
184
185
186
187
188
189
190

## C++ API

`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```