test_conv.py 2.76 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
from torch.autograd import gradcheck
rusty1s's avatar
rusty1s committed
6
from torch_spline_conv import SplineConv
rusty1s's avatar
rusty1s committed
7
from torch_spline_conv.utils.ffi import implemented_degrees as degrees
rusty1s's avatar
rusty1s committed
8

rusty1s's avatar
rusty1s committed
9
from .utils import dtypes, devices, tensor
rusty1s's avatar
rusty1s committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tests = [{
    'src': [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]],
    'edge_index': [[0, 0, 0, 0], [1, 2, 3, 4]],
    'pseudo': [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]],
    'weight': [
        [[0.5], [1]],
        [[1.5], [2]],
        [[2.5], [3]],
        [[3.5], [4]],
        [[4.5], [5]],
        [[5.5], [6]],
        [[6.5], [7]],
        [[7.5], [8]],
        [[8.5], [9]],
        [[9.5], [10]],
        [[10.5], [11]],
        [[11.5], [12]],
    ],
    'kernel_size': [3, 4],
    'is_open_spline': [1, 0],
    'root_weight': [[12.5], [13]],
    'bias': [1],
    'output': [
        [1 + 12.5 * 9 + 13 * 10 + (8.5 + 40.5 + 107.5 + 101.5) / 4],
        [1 + 12.5 * 1 + 13 * 2],
        [1 + 12.5 * 3 + 13 * 4],
        [1 + 12.5 * 5 + 13 * 6],
        [1 + 12.5 * 7 + 13 * 8],
    ]
}]


rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
49
50
51
52
@pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices))
def test_spline_conv_forward(test, dtype, device):
    src = tensor(test['src'], dtype, device)
    edge_index = tensor(test['edge_index'], torch.long, device)
    pseudo = tensor(test['pseudo'], dtype, device)
    weight = tensor(test['weight'], dtype, device)
    kernel_size = tensor(test['kernel_size'], torch.long, device)
    is_open_spline = tensor(test['is_open_spline'], torch.uint8, device)
    root_weight = tensor(test['root_weight'], dtype, device)
    bias = tensor(test['bias'], dtype, device)
rusty1s's avatar
rusty1s committed
53

rusty1s's avatar
rusty1s committed
54
55
    output = SplineConv.apply(src, edge_index, pseudo, weight, kernel_size,
                              is_open_spline, 1, root_weight, bias)
rusty1s's avatar
rusty1s committed
56
57
58
59
60
    assert output.tolist() == test['output']


@pytest.mark.parametrize('degree,device', product(degrees.keys(), devices))
def test_spline_basis_backward(degree, device):
rusty1s's avatar
rusty1s committed
61
62
63
64
65
66
67
68
69
70
71
72
73
    src = torch.rand((3, 2), dtype=torch.double, device=device)
    src.requires_grad_()
    edge_index = tensor([[0, 1, 1, 2], [1, 0, 2, 1]], torch.long, device)
    pseudo = torch.rand((4, 3), dtype=torch.double, device=device)
    pseudo.requires_grad_()
    weight = torch.rand((125, 2, 4), dtype=torch.double, device=device)
    weight.requires_grad_()
    kernel_size = tensor([5, 5, 5], torch.long, device)
    is_open_spline = tensor([1, 0, 1], torch.uint8, device)
    root_weight = torch.rand((2, 4), dtype=torch.double, device=device)
    root_weight.requires_grad_()
    bias = torch.rand((4), dtype=torch.double, device=device)
    bias.requires_grad_()
rusty1s's avatar
rusty1s committed
74

rusty1s's avatar
rusty1s committed
75
76
77
    data = (src, edge_index, pseudo, weight, kernel_size, is_open_spline,
            degree, root_weight, bias)
    assert gradcheck(SplineConv.apply, data, eps=1e-6, atol=1e-4) is True