test_conv.py 4.85 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from itertools import product

import pytest
import torch
from torch.autograd import Variable, gradcheck
from torch_spline_conv import spline_conv
from torch_spline_conv.utils.ffi import implemented_degrees

from .tensor import tensors

tests = [{
    'src': [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]],
    'edge_index': [[0, 0, 0, 0], [1, 2, 3, 4]],
    'pseudo': [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]],
    'weight': [
        [[0.5], [1]],
        [[1.5], [2]],
        [[2.5], [3]],
        [[3.5], [4]],
        [[4.5], [5]],
        [[5.5], [6]],
        [[6.5], [7]],
        [[7.5], [8]],
        [[8.5], [9]],
        [[9.5], [10]],
        [[10.5], [11]],
        [[11.5], [12]],
    ],
    'kernel_size': [3, 4],
    'is_open_spline': [1, 0],
    'root_weight': [[12.5], [13]],
    'bias': [1],
    'output': [
        [1 + 12.5 * 9 + 13 * 10 + (8.5 + 40.5 + 107.5 + 101.5) / 4],
        [1 + 12.5 * 1 + 13 * 2],
        [1 + 12.5 * 3 + 13 * 4],
        [1 + 12.5 * 5 + 13 * 6],
        [1 + 12.5 * 7 + 13 * 8],
    ]
}]


@pytest.mark.parametrize('tensor,i', product(tensors, range(len(tests))))
def test_spline_conv_forward_cpu(tensor, i):
    data = tests[i]

    src = getattr(torch, tensor)(data['src'])
    edge_index = torch.LongTensor(data['edge_index'])
    pseudo = getattr(torch, tensor)(data['pseudo'])
    weight = getattr(torch, tensor)(data['weight'])
    kernel_size = torch.LongTensor(data['kernel_size'])
    is_open_spline = torch.ByteTensor(data['is_open_spline'])
    root_weight = getattr(torch, tensor)(data['root_weight'])
    bias = getattr(torch, tensor)(data['bias'])

    output = spline_conv(src, edge_index, pseudo, weight, kernel_size,
                         is_open_spline, 1, root_weight, bias)
    assert output.tolist() == data['output']


@pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
@pytest.mark.parametrize('tensor,i', product(tensors, range(len(tests))))
def test_spline_conv_forward_gpu(tensor, i):
    data = tests[i]

    src = getattr(torch.cuda, tensor)(data['src'])
    edge_index = torch.cuda.LongTensor(data['edge_index'])
    pseudo = getattr(torch.cuda, tensor)(data['pseudo'])
    weight = getattr(torch.cuda, tensor)(data['weight'])
    kernel_size = torch.cuda.LongTensor(data['kernel_size'])
    is_open_spline = torch.cuda.ByteTensor(data['is_open_spline'])
    root_weight = getattr(torch.cuda, tensor)(data['root_weight'])
    bias = getattr(torch.cuda, tensor)(data['bias'])

    output = spline_conv(src, edge_index, pseudo, weight, kernel_size,
                         is_open_spline, 1, root_weight, bias)
    assert output.cpu().tolist() == data['output']


@pytest.mark.parametrize('degree', implemented_degrees.keys())
def test_spline_basis_backward_cpu(degree):
    src = torch.DoubleTensor(3, 2).uniform_(-1, 1)
    edge_index = torch.LongTensor([[0, 1, 1, 2], [1, 0, 2, 1]])
    pseudo = torch.DoubleTensor(4, 3).uniform_(0, 1)
    weight = torch.DoubleTensor(125, 2, 4).uniform_(-1, 1)
    kernel_size = torch.LongTensor([5, 5, 5])
    is_open_spline = torch.ByteTensor([1, 0, 1])
    root_weight = torch.DoubleTensor(2, 4).uniform_(-1, 1)
    bias = torch.DoubleTensor(4).uniform_(-1, 1)

    src = Variable(src, requires_grad=True)
    pseudo = Variable(pseudo, requires_grad=True)
    weight = Variable(weight, requires_grad=True)
    root_weight = Variable(root_weight, requires_grad=True)
    bias = Variable(bias, requires_grad=True)

    def op(src, pseudo, weight, root_weight, bias):
        return spline_conv(src, edge_index, pseudo, weight, kernel_size,
                           is_open_spline, degree, root_weight, bias)

    data = (src, pseudo, weight, root_weight, bias)
    assert gradcheck(op, data, eps=1e-6, atol=1e-4) is True


@pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
@pytest.mark.parametrize('degree', [2])
def test_spline_basis_backward_gpu(degree):
    src = torch.cuda.DoubleTensor(3, 2).uniform_(-1, 1)
    edge_index = torch.cuda.LongTensor([[0, 1, 1, 2], [1, 0, 2, 1]])
    pseudo = torch.cuda.DoubleTensor(4, 3).uniform_(0, 1)
    weight = torch.cuda.DoubleTensor(125, 2, 4).uniform_(-1, 1)
    kernel_size = torch.cuda.LongTensor([5, 5, 5])
    is_open_spline = torch.cuda.ByteTensor([1, 0, 1])
    root_weight = torch.cuda.DoubleTensor(2, 4).uniform_(-1, 1)
    bias = torch.cuda.DoubleTensor(4).uniform_(-1, 1)

    src = Variable(src, requires_grad=False)
    pseudo = Variable(pseudo, requires_grad=True)
    weight = Variable(weight, requires_grad=False)
    root_weight = Variable(root_weight, requires_grad=False)
    bias = Variable(bias, requires_grad=False)

    def op(src, pseudo, weight, root_weight, bias):
        return spline_conv(src, edge_index, pseudo, weight, kernel_size,
                           is_open_spline, degree, root_weight, bias)

    data = (src, pseudo, weight, root_weight, bias)
    assert gradcheck(op, data, eps=1e-6, atol=1e-4) is True