README.md 4.74 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
[build-image]: https://travis-ci.org/rusty1s/pytorch_spline_conv.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_spline_conv
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
8
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
15

rusty1s's avatar
bugfix  
rusty1s committed
16
17
18
19
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
20
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
21
22
23

## Installation

rusty1s's avatar
typos  
rusty1s committed
24
If cuda is available, check that `nvcc` is accessible from your terminal, e.g. by typing `nvcc --version`.
rusty1s's avatar
bugfix  
rusty1s committed
25
26
27
28
29
30
31
32
33
34
If not, add cuda (`/usr/local/cuda/bin`) to your `$PATH`.
Then run:

```
pip install cffi torch-spline-conv
```

## Usage

```python
rusty1s's avatar
rusty1s committed
35
from torch_spline_conv import SplineConv
rusty1s's avatar
bugfix  
rusty1s committed
36

rusty1s's avatar
typo  
rusty1s committed
37
38
39
40
41
42
43
44
output = SplineConv.apply(src,
                          edge_index,
                          pseudo,
                          weight,
                          kernel_size,
                          is_open_spline,
                          degree,
                          root_weight=None,
rusty1s's avatar
rusty1s committed
45
                          bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
46
47
```

rusty1s's avatar
typo  
rusty1s committed
48
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
49
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
50
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
51
</p>
rusty1s's avatar
bugfix  
rusty1s committed
52
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
53
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
54

Matthias Fey's avatar
Matthias Fey committed
55
56
57
58
59
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
60
61
### Parameters

rusty1s's avatar
rusty1s committed
62
63
64
65
66
67
68
69
70
* **src** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
* **degree** *(Scalar)* - B-spline basis degree.
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
71
72
73

### Returns

rusty1s's avatar
rusty1s committed
74
* **output** *(Tensor)* - Output node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
75
76
77
78
79

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
80
from torch_spline_conv import SplineConv
rusty1s's avatar
bugfix  
rusty1s committed
81

rusty1s's avatar
typo  
rusty1s committed
82
src = torch.Tensor(4, 2)  # 4 nodes with 2 features each
rusty1s's avatar
bugfix  
rusty1s committed
83
edge_index = torch.LongTensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
rusty1s's avatar
typos  
rusty1s committed
84
pseudo = torch.Tensor(6, 2)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
85
weight = torch.Tensor(25, 2, 4)  # 25 trainable parameters for in_channels x out_channels
rusty1s's avatar
bugfix  
rusty1s committed
86
kernel_size = torch.LongTensor([5, 5])  # 5 trainable parameters in each edge dimension
rusty1s's avatar
typos  
rusty1s committed
87
is_open_spline = torch.ByteTensor([1, 1])  # only use open B-splines
rusty1s's avatar
rusty1s committed
88
degree = torch.tensor(1)  # B-spline degree of 1
rusty1s's avatar
typo  
rusty1s committed
89
root_weight = torch.Tensor(2, 4)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
90
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
91

rusty1s's avatar
rusty1s committed
92
93
output = SplineConv.apply(src, edge_index, pseudo, weight, kernel_size,
                          is_open_spline, degree, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
94
95

print(output.size())
rusty1s's avatar
typo  
rusty1s committed
96
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
97
98
```

rusty1s's avatar
rusty1s committed
99
100
101
102
103
104
105
106
107
108
109
110
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
111
112
113
114
115
116

## Running tests

```
python setup.py test
```