@@ -48,8 +48,8 @@ The kernel function *g* is defined over the weighted B-spline tensor product bas
...
@@ -48,8 +48,8 @@ The kernel function *g* is defined over the weighted B-spline tensor product bas
### Parameters
### Parameters
***src***(Tensor or Variable)* - Input node features of shape `(number_of_nodes x in_channels)`
***src***(Tensor or Variable)* - Input node features of shape `(number_of_nodes x in_channels)`
***edge_idex***(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`
***edge_index***(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`
***pseudo***(Tensor or Variable)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)`
***pseudo***(Tensor or Variable)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1]
***weight***(Tensor or Variable)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`
***weight***(Tensor or Variable)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`
***kernel_size***(LongTensor)* - Number of trainable weight parameters in each edge dimension
***kernel_size***(LongTensor)* - Number of trainable weight parameters in each edge dimension
***is_open_spline***(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension
***is_open_spline***(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension
...
@@ -65,16 +65,16 @@ from torch_spline_conv import spline_conv
...
@@ -65,16 +65,16 @@ from torch_spline_conv import spline_conv