basis.cpp 10.8 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
#include <torch/extension.h>
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
rusty1s committed
3
template <typename scalar_t> inline scalar_t linear(scalar_t v, int64_t k_mod) {
rusty1s's avatar
rusty1s committed
4
5
6
  return 1 - v - k_mod + 2 * v * k_mod;
}

rusty1s's avatar
rusty1s committed
7
8
template <typename scalar_t>
inline scalar_t quadratic(scalar_t v, int64_t k_mod) {
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14
15
16
  if (k_mod == 0)
    return 0.5 * v * v - v + 0.5;
  else if (k_mod == 1)
    return -v * v + v + 0.5;
  else
    return 0.5 * v * v;
}

rusty1s's avatar
rusty1s committed
17
18
template <typename scalar_t> inline scalar_t cubic(scalar_t v, int64_t k_mod) {
  if (k_mod == 0)
rusty1s's avatar
rusty1s committed
19
    return (1 - v) * (1 - v) * (1 - v) / 6.0;
rusty1s's avatar
rusty1s committed
20
  else if (k_mod == 1)
rusty1s's avatar
rusty1s committed
21
22
23
24
25
26
27
28
29
30
31
    return (3 * v * v * v - 6 * v * v + 4) / 6;
  else if (k_mod == 2)
    return (-3 * v * v * v + 3 * v * v + 3 * v + 1) / 6;
  else
    return v * v * v / 6;
}

#define BASIS_FORWARD(M, PSEUDO, KERNEL_SIZE, IS_OPEN_SPLINE, FUNC)            \
  [&]() -> std::tuple<at::Tensor, at::Tensor> {                                \
    auto E = PSEUDO.size(0), D = PSEUDO.size(1);                               \
    auto S = (int64_t)(pow(M + 1, KERNEL_SIZE.size(0)) + 0.5);                 \
rusty1s's avatar
rusty1s committed
32
33
    auto basis = at::empty({E, S}, PSEUDO.options());                          \
    auto weight_index = at::empty({E, S}, KERNEL_SIZE.options());              \
rusty1s's avatar
rusty1s committed
34
                                                                               \
rusty1s's avatar
rusty1s committed
35
36
37
38
39
40
41
    AT_DISPATCH_FLOATING_TYPES(                                                \
        PSEUDO.scalar_type(), "basis_forward_##M", [&] {                       \
          auto pseudo_data = PSEUDO.data<scalar_t>();                          \
          auto kernel_size_data = KERNEL_SIZE.data<int64_t>();                 \
          auto is_open_spline_data = IS_OPEN_SPLINE.data<uint8_t>();           \
          auto basis_data = basis.data<scalar_t>();                            \
          auto weight_index_data = weight_index.data<int64_t>();               \
rusty1s's avatar
rusty1s committed
42
                                                                               \
rusty1s's avatar
rusty1s committed
43
44
          int64_t k, wi, wi_offset;                                            \
          scalar_t b;                                                          \
rusty1s's avatar
rusty1s committed
45
                                                                               \
rusty1s's avatar
rusty1s committed
46
47
48
49
50
51
52
53
54
          for (ptrdiff_t e = 0; e < E; e++) {                                  \
            for (ptrdiff_t s = 0; s < S; s++) {                                \
              k = s;                                                           \
              wi = 0;                                                          \
              wi_offset = 1;                                                   \
              b = 1;                                                           \
              for (ptrdiff_t d = 0; d < D; d++) {                              \
                auto k_mod = k % (M + 1);                                      \
                k /= M + 1;                                                    \
rusty1s's avatar
rusty1s committed
55
                                                                               \
rusty1s's avatar
rusty1s committed
56
57
58
                auto v =                                                       \
                    pseudo_data[e * pseudo.stride(0) + d * pseudo.stride(1)];  \
                v *= kernel_size_data[d] - M * is_open_spline_data[d];         \
rusty1s's avatar
rusty1s committed
59
                                                                               \
rusty1s's avatar
rusty1s committed
60
61
62
                wi +=                                                          \
                    (((int64_t)v + k_mod) % kernel_size_data[d]) * wi_offset;  \
                wi_offset *= kernel_size_data[d];                              \
rusty1s's avatar
rusty1s committed
63
                                                                               \
rusty1s's avatar
rusty1s committed
64
65
66
67
68
69
70
                v -= floor(v);                                                 \
                v = FUNC<scalar_t>(v, k_mod);                                  \
                b *= v;                                                        \
              }                                                                \
              basis_data[e * S + s] = b;                                       \
              weight_index_data[e * S + s] = wi;                               \
            }                                                                  \
rusty1s's avatar
rusty1s committed
71
          }                                                                    \
rusty1s's avatar
rusty1s committed
72
        });                                                                    \
rusty1s's avatar
rusty1s committed
73
74
75
    return std::make_tuple(basis, weight_index);                               \
  }()

rusty1s's avatar
rusty1s committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
std::tuple<at::Tensor, at::Tensor> linear_fw(at::Tensor pseudo,
                                             at::Tensor kernel_size,
                                             at::Tensor is_open_spline) {
  return BASIS_FORWARD(1, pseudo, kernel_size, is_open_spline, linear);
}

std::tuple<at::Tensor, at::Tensor> quadratic_fw(at::Tensor pseudo,
                                                at::Tensor kernel_size,
                                                at::Tensor is_open_spline) {
  return BASIS_FORWARD(2, pseudo, kernel_size, is_open_spline, quadratic);
}

std::tuple<at::Tensor, at::Tensor>
cubic_fw(at::Tensor pseudo, at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_FORWARD(3, pseudo, kernel_size, is_open_spline, cubic);
}

template <typename scalar_t>
inline scalar_t grad_linear(scalar_t v, int64_t k_mod) {
  return 2 * k_mod - 1;
}

template <typename scalar_t>
inline scalar_t grad_quadratic(scalar_t v, int64_t k_mod) {
  if (k_mod == 0)
    return v - 1;
  else if (k_mod == 1)
    return -2 * v + 1;
  else
    return v;
}

template <typename scalar_t>
inline scalar_t grad_cubic(scalar_t v, int64_t k_mod) {
  if (k_mod == 0)
    return (-v * v + 2 * v - 1) / 2;
  else if (k_mod == 1)
    return (3 * v * v - 4 * v) / 2;
  else if (k_mod == 2)
    return (-3 * v * v + 2 * v + 1) / 2;
  else
    return v * v / 2;
}

rusty1s's avatar
rusty1s committed
120
121
122
123
124
#define BASIS_BACKWARD(M, GRAD_BASIS, PSEUDO, KERNEL_SIZE, IS_OPEN_SPLINE,     \
                       FUNC, GRAD_FUNC)                                        \
  [&]() -> at::Tensor {                                                        \
    auto E = PSEUDO.size(0), D = PSEUDO.size(1);                               \
    auto S = GRAD_BASIS.size(1);                                               \
rusty1s's avatar
rusty1s committed
125
    auto grad_pseudo = at::empty({E, D}, PSEUDO.options());                    \
rusty1s's avatar
rusty1s committed
126
                                                                               \
rusty1s's avatar
rusty1s committed
127
128
129
130
131
132
133
    AT_DISPATCH_FLOATING_TYPES(                                                \
        PSEUDO.scalar_type(), "basis_backward_##M", [&] {                      \
          auto grad_basis_data = GRAD_BASIS.data<scalar_t>();                  \
          auto pseudo_data = PSEUDO.data<scalar_t>();                          \
          auto kernel_size_data = KERNEL_SIZE.data<int64_t>();                 \
          auto is_open_spline_data = IS_OPEN_SPLINE.data<uint8_t>();           \
          auto grad_pseudo_data = grad_pseudo.data<scalar_t>();                \
rusty1s's avatar
rusty1s committed
134
                                                                               \
rusty1s's avatar
rusty1s committed
135
          scalar_t g, tmp;                                                     \
rusty1s's avatar
rusty1s committed
136
                                                                               \
rusty1s's avatar
rusty1s committed
137
138
139
140
141
142
143
144
145
146
147
          for (ptrdiff_t e = 0; e < E; e++) {                                  \
            for (ptrdiff_t d = 0; d < D; d++) {                                \
              g = 0;                                                           \
              for (ptrdiff_t s = 0; s < S; s++) {                              \
                auto k_mod = (s / (int64_t)(pow(M + 1, d) + 0.5)) % (M + 1);   \
                auto v =                                                       \
                    pseudo_data[e * pseudo.stride(0) + d * pseudo.stride(1)];  \
                v *= kernel_size_data[d] - M * is_open_spline_data[d];         \
                v -= floor(v);                                                 \
                v = GRAD_FUNC<scalar_t>(v, k_mod);                             \
                tmp = v;                                                       \
rusty1s's avatar
rusty1s committed
148
                                                                               \
rusty1s's avatar
rusty1s committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
                for (ptrdiff_t d_it = 1; d_it < D; d_it++) {                   \
                  auto d_new = d_it - (d >= d_it);                             \
                  k_mod = (s / (int64_t)(pow(M + 1, d_new) + 0.5)) % (M + 1);  \
                  v = pseudo_data[e * pseudo.stride(0) +                       \
                                  d_new * pseudo.stride(1)];                   \
                  v *= kernel_size_data[d_new] -                               \
                       M * is_open_spline_data[d_new];                         \
                  v -= floor(v);                                               \
                  v = FUNC<scalar_t>(v, k_mod);                                \
                  tmp *= v;                                                    \
                }                                                              \
                g += tmp * grad_basis_data[e * grad_basis.stride(0) +          \
                                           s * grad_basis.stride(1)];          \
              }                                                                \
              g *= kernel_size_data[d] - M * is_open_spline_data[d];           \
              grad_pseudo_data[e * D + d] = g;                                 \
rusty1s's avatar
rusty1s committed
165
166
            }                                                                  \
          }                                                                    \
rusty1s's avatar
rusty1s committed
167
        });                                                                    \
rusty1s's avatar
rusty1s committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    return grad_pseudo;                                                        \
  }()

at::Tensor linear_bw(at::Tensor grad_basis, at::Tensor pseudo,
                     at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_BACKWARD(1, grad_basis, pseudo, kernel_size, is_open_spline,
                        linear, grad_linear);
}

at::Tensor quadratic_bw(at::Tensor grad_basis, at::Tensor pseudo,
                        at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_BACKWARD(2, grad_basis, pseudo, kernel_size, is_open_spline,
                        quadratic, grad_quadratic);
}

at::Tensor cubic_bw(at::Tensor grad_basis, at::Tensor pseudo,
                    at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_BACKWARD(3, grad_basis, pseudo, kernel_size, is_open_spline,
                        cubic, grad_cubic);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("linear_fw", &linear_fw, "Linear Basis Forward (CPU)");
  m.def("quadratic_fw", &quadratic_fw, "Quadratic Basis Forward (CPU)");
  m.def("cubic_fw", &cubic_fw, "Cubic Basis Forward (CPU)");
  m.def("linear_bw", &linear_bw, "Linear Basis Backward (CPU)");
  m.def("quadratic_bw", &quadratic_bw, "Quadratic Basis Backward (CPU)");
  m.def("cubic_bw", &cubic_bw, "Cubic Basis Backward (CPU)");
}