basis.cpp 10.3 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#include <torch/torch.h>

template <typename scalar> inline scalar linear(scalar v, int64_t k_mod) {
  return 1 - v - k_mod + 2 * v * k_mod;
}

template <typename scalar> inline scalar quadratic(scalar v, int64_t k_mod) {
  if (k_mod == 0)
    return 0.5 * v * v - v + 0.5;
  else if (k_mod == 1)
    return -v * v + v + 0.5;
  else
    return 0.5 * v * v;
}

template <typename scalar> inline scalar cubic(scalar v, int64_t k_mod) {
  if (k_mod == 0) {
    return (1 - v) * (1 - v) * (1 - v) / 6.0;
  } else if (k_mod == 1)
    return (3 * v * v * v - 6 * v * v + 4) / 6;
  else if (k_mod == 2)
    return (-3 * v * v * v + 3 * v * v + 3 * v + 1) / 6;
  else
    return v * v * v / 6;
}

template <typename scalar> inline scalar grad_linear(scalar v, int64_t k_mod) {
  return 2 * k_mod - 1;
}

template <typename scalar>
inline scalar grad_quadratic(scalar v, int64_t k_mod) {
  if (k_mod == 0)
    return v - 1;
  else if (k_mod == 1)
    return -2 * v + 1;
  else
    return v;
}

template <typename scalar> inline scalar grad_cubic(scalar v, int64_t k_mod) {
  if (k_mod == 0)
    return (-v * v + 2 * v - 1) / 2;
  else if (k_mod == 1)
    return (3 * v * v - 4 * v) / 2;
  else if (k_mod == 2)
    return (-3 * v * v + 2 * v + 1) / 2;
  else
    return v * v / 2;
}

#define BASIS_FORWARD(M, PSEUDO, KERNEL_SIZE, IS_OPEN_SPLINE, FUNC)            \
  [&]() -> std::tuple<at::Tensor, at::Tensor> {                                \
    auto E = PSEUDO.size(0), D = PSEUDO.size(1);                               \
    auto S = (int64_t)(pow(M + 1, KERNEL_SIZE.size(0)) + 0.5);                 \
    auto basis = at::empty({E, S}, PSEUDO.type());                             \
    auto weight_index = at::empty({E, S}, KERNEL_SIZE.type());                 \
                                                                               \
    AT_DISPATCH_FLOATING_TYPES(PSEUDO.type(), "basis_forward_##M", [&] {       \
      auto pseudo_data = PSEUDO.data<scalar_t>();                              \
      auto kernel_size_data = KERNEL_SIZE.data<int64_t>();                     \
      auto is_open_spline_data = IS_OPEN_SPLINE.data<uint8_t>();               \
      auto basis_data = basis.data<scalar_t>();                                \
      auto weight_index_data = weight_index.data<int64_t>();                   \
                                                                               \
      int64_t k, wi, wi_offset;                                                \
      scalar_t b;                                                              \
                                                                               \
      for (ptrdiff_t e = 0; e < E; e++) {                                      \
        for (ptrdiff_t s = 0; s < S; s++) {                                    \
          k = s;                                                               \
          wi = 0;                                                              \
          wi_offset = 1;                                                       \
          b = 1;                                                               \
          for (ptrdiff_t d = 0; d < D; d++) {                                  \
            auto k_mod = k % (M + 1);                                          \
            k /= M + 1;                                                        \
                                                                               \
            auto v = pseudo_data[e * pseudo.stride(0) + d * pseudo.stride(1)]; \
            v *= kernel_size_data[d] - M * is_open_spline_data[d];             \
                                                                               \
            wi += (((int64_t)v + k_mod) % kernel_size_data[d]) * wi_offset;    \
            wi_offset *= kernel_size_data[d];                                  \
                                                                               \
            v -= floor(v);                                                     \
            v = FUNC<scalar_t>(v, k_mod);                                      \
            b *= v;                                                            \
          }                                                                    \
          basis_data[e * S + s] = b;                                           \
          weight_index_data[e * S + s] = wi;                                   \
        }                                                                      \
      }                                                                        \
    });                                                                        \
    return std::make_tuple(basis, weight_index);                               \
  }()

#define BASIS_BACKWARD(M, GRAD_BASIS, PSEUDO, KERNEL_SIZE, IS_OPEN_SPLINE,     \
                       FUNC, GRAD_FUNC)                                        \
  [&]() -> at::Tensor {                                                        \
    auto E = PSEUDO.size(0), D = PSEUDO.size(1);                               \
    auto S = GRAD_BASIS.size(1);                                               \
    auto grad_pseudo = at::empty({E, D}, PSEUDO.type());                       \
                                                                               \
    AT_DISPATCH_FLOATING_TYPES(PSEUDO.type(), "basis_backward_##M", [&] {      \
      auto grad_basis_data = GRAD_BASIS.data<scalar_t>();                      \
      auto pseudo_data = PSEUDO.data<scalar_t>();                              \
      auto kernel_size_data = KERNEL_SIZE.data<int64_t>();                     \
      auto is_open_spline_data = IS_OPEN_SPLINE.data<uint8_t>();               \
      auto grad_pseudo_data = grad_pseudo.data<scalar_t>();                    \
                                                                               \
      scalar_t g, tmp;                                                         \
                                                                               \
      for (ptrdiff_t e = 0; e < E; e++) {                                      \
        for (ptrdiff_t d = 0; d < D; d++) {                                    \
          g = 0;                                                               \
          for (ptrdiff_t s = 0; s < S; s++) {                                  \
            auto k_mod = (s / (int64_t)(pow(M + 1, d) + 0.5)) % (M + 1);       \
            auto v = pseudo_data[e * pseudo.stride(0) + d * pseudo.stride(1)]; \
            v *= kernel_size_data[d] - M * is_open_spline_data[d];             \
            v -= floor(v);                                                     \
            v = GRAD_FUNC<scalar_t>(v, k_mod);                                 \
            tmp = v;                                                           \
                                                                               \
            for (ptrdiff_t d_it = 1; d_it < D; d_it++) {                       \
              auto d_other = d_it - (d >= d_it);                               \
              k_mod = (s / (int64_t)(pow(M + 1, d_other) + 0.5)) % (M + 1);    \
              v = pseudo_data[e * pseudo.stride(0) +                           \
                              d_other * pseudo.stride(1)];                     \
              v *= kernel_size_data[d_other] -                                 \
                   M * is_open_spline_data[d_other];                           \
              v -= floor(v);                                                   \
              v = FUNC<scalar_t>(v, k_mod);                                    \
              tmp *= v;                                                        \
            }                                                                  \
            g += tmp * grad_basis_data[e * grad_basis.stride(0) +              \
                                       s * grad_basis.stride(1)];              \
          }                                                                    \
          g *= kernel_size_data[d] - M * is_open_spline_data[d];               \
          grad_pseudo_data[e * D + d] = g;                                     \
        }                                                                      \
      }                                                                        \
    });                                                                        \
    return grad_pseudo;                                                        \
  }()

std::tuple<at::Tensor, at::Tensor> linear_fw(at::Tensor pseudo,
                                             at::Tensor kernel_size,
                                             at::Tensor is_open_spline) {
  return BASIS_FORWARD(1, pseudo, kernel_size, is_open_spline, linear);
}

std::tuple<at::Tensor, at::Tensor> quadratic_fw(at::Tensor pseudo,
                                                at::Tensor kernel_size,
                                                at::Tensor is_open_spline) {
  return BASIS_FORWARD(2, pseudo, kernel_size, is_open_spline, quadratic);
}

std::tuple<at::Tensor, at::Tensor>
cubic_fw(at::Tensor pseudo, at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_FORWARD(3, pseudo, kernel_size, is_open_spline, cubic);
}

at::Tensor linear_bw(at::Tensor grad_basis, at::Tensor pseudo,
                     at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_BACKWARD(1, grad_basis, pseudo, kernel_size, is_open_spline,
                        linear, grad_linear);
}

at::Tensor quadratic_bw(at::Tensor grad_basis, at::Tensor pseudo,
                        at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_BACKWARD(2, grad_basis, pseudo, kernel_size, is_open_spline,
                        quadratic, grad_quadratic);
}

at::Tensor cubic_bw(at::Tensor grad_basis, at::Tensor pseudo,
                    at::Tensor kernel_size, at::Tensor is_open_spline) {
  return BASIS_BACKWARD(3, grad_basis, pseudo, kernel_size, is_open_spline,
                        cubic, grad_cubic);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("linear_fw", &linear_fw, "Linear Basis Forward (CPU)");
  m.def("quadratic_fw", &quadratic_fw, "Quadratic Basis Forward (CPU)");
  m.def("cubic_fw", &cubic_fw, "Cubic Basis Forward (CPU)");
  m.def("linear_bw", &linear_bw, "Linear Basis Backward (CPU)");
  m.def("quadratic_bw", &quadratic_bw, "Quadratic Basis Backward (CPU)");
  m.def("cubic_bw", &cubic_bw, "Cubic Basis Backward (CPU)");
}