storage.py 5.58 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import torch
from torch import Size
from torch_scatter import scatter_add, segment_add


class SparseStorage(object):
    def __init__(self, row, col, value=None, sparse_size=None, rowptr=None,
                 colptr=None, arg_csr_to_csc=None, arg_csc_to_csr=None,
                 is_sorted=False):

        assert row.dtype == torch.long and col.dtype == torch.long
        assert row.device == row.device
        assert row.dim() == 1 and col.dim() == 1 and row.numel() == col.numel()

rusty1s's avatar
sorting  
rusty1s committed
15
16
17
        if sparse_size is None:
            sparse_size = Size((row.max().item() + 1, col.max().item() + 1))

rusty1s's avatar
rusty1s committed
18
        if not is_sorted:
rusty1s's avatar
sorting  
rusty1s committed
19
20
21
22
23
24
25
26
27
28
29
            idx = sparse_size[1] * row + col
            # Only sort if necessary...
            if (idx <= torch.cat([idx.new_zeros(1), idx[:-1]], dim=0)).any():
                perm = idx.argsort()
                row = row[perm]
                col = col[perm]
                value = None if value is None else value[perm]
                rowptr = None
                colptr = None
                arg_csr_to_csc = None
                arg_csc_to_csr = None
rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36
37

        if value is not None:
            assert row.device == value.device and value.size(0) == row.size(0)
            value = value.contiguous()

        ones = None
        if rowptr is None:
            ones = torch.ones_like(row)
rusty1s's avatar
sorting  
rusty1s committed
38
39
            out_deg = segment_add(ones, row, dim=0, dim_size=sparse_size[0])
            rowptr = torch.cat([row.new_zeros(1), out_deg.cumsum(0)], dim=0)
rusty1s's avatar
rusty1s committed
40
41
42

        if colptr is None:
            ones = torch.ones_like(col) if ones is None else ones
rusty1s's avatar
sorting  
rusty1s committed
43
44
            in_deg = scatter_add(ones, col, dim=0, dim_size=sparse_size[1])
            colptr = torch.cat([col.new_zeros(1), in_deg.cumsum(0)], dim=0)
rusty1s's avatar
rusty1s committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        if arg_csr_to_csc is None:
            idx = sparse_size[0] * col + row
            arg_csr_to_csc = idx.argsort()

        if arg_csr_to_csc is None:
            arg_csc_to_csr = arg_csr_to_csc.argsort()

        self.__row = row
        self.__col = col
        self.__value = value
        self.__sparse_size = sparse_size
        self.__rowptr = rowptr
        self.__colptr = colptr
        self.__arg_csr_to_csc = arg_csr_to_csc
        self.__arg_csc_to_csr = arg_csc_to_csr

    @property
    def row(self):
        return self.__row

    @property
    def col(self):
        return self.__col

    def index(self):
        return torch.stack([self.__row, self.__col], dim=0)

    @property
    def rowptr(self):
        return self.__rowptr

    @property
    def colptr(self):
        return self.__colptr

    @property
    def arg_csr_to_csc(self):
        return self.__arg_csr_to_csc

    @property
    def arg_csc_to_csr(self):
        return self.__arg_csc_to_csr

    @property
    def value(self):
        return self.__value

    @property
    def has_value(self):
        return self.__value is not None

    def sparse_size(self, dim=None):
        return self.__sparse_size if dim is None else self.__sparse_size[dim]

    def size(self, dim=None):
        size = self.__sparse_size
        size += () if self.has_value is None else self.__value.size()[1:]
        return size if dim is None else size[dim]

    @property
    def shape(self):
        return self.size()

    def sparse_resize_(self, *sizes):
        assert len(sizes) == 2
        self.__sparse_size == sizes

    def clone(self):
        raise NotImplementedError

    def copy_(self):
        raise NotImplementedError

    def pin_memory(self):
        raise NotImplementedError

    def is_pinned(self):
        raise NotImplementedError

    def share_memory_(self):
        raise NotImplementedError

    def is_shared(self):
        raise NotImplementedError

    @property
    def device(self):
        return self.__row.device

    def cpu(self):
        pass

    def cuda(device=None, non_blocking=False, **kwargs):
        pass

    @property
    def is_cuda(self):
        pass

    @property
    def dtype(self):
        pass

    def type(dtype=None, non_blocking=False, **kwargs):
        pass

    def is_floating_point(self):
        pass

    def bfloat16(self):
        pass

    def bool(self):
        pass

    def byte(self):
        pass

    def char(self):
        pass

    def half(self):
        pass

    def float(self):
        pass

    def double(self):
        pass

    def short(self):
        pass

    def int(self):
        pass

    def long(self):
        pass

    def __apply_index(self, func):
        pass

    def __apply_index_(self, func):
        self.__row = func(self.__row)
        self.__col = func(self.__col)
        self.__rowptr = func(self.__rowptr)
        self.__colptr = func(self.__colptr)
        self.__arg_csr_to_csc = func(self.__arg_csr_to_csc)
        self.__arg_csc_to_csr = func(self.__arg_csc_to_csr)

    def __apply_value(self, func):
        pass

    def __apply_value_(self, func):
        self.__value = func(self.__value) if self.has_value else None

    def __apply(self, func):
        pass

    def __apply_(self, func):
        self.__apply_index_(func)
        self.__apply_value_(func)


if __name__ == '__main__':
    from torch_geometric.datasets import Reddit  # noqa
    import time  # noqa

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    dataset = Reddit('/tmp/Reddit')
    data = dataset[0].to(device)
    edge_index = data.edge_index
    row, col = edge_index
rusty1s's avatar
sorting  
rusty1s committed
220
221
222
223
224
225
226
227
228
229
230
231
232

    storage = SparseStorage(row, col)
    # idx = data.num_nodes * col + row
    # perm = idx.argsort()
    # row, col = row[perm], col[perm]
    # print(row[:20])
    # print(col[:20])
    # print('--------')

    # perm = perm.argsort()
    # row, col = row[perm], col[perm]
    # print(row[:20])
    # print(col[:20])