storage.py 5.19 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
from torch import Size
from torch_scatter import scatter_add, segment_add


class SparseStorage(object):
    def __init__(self, row, col, value=None, sparse_size=None, rowptr=None,
                 colptr=None, arg_csr_to_csc=None, arg_csc_to_csr=None,
                 is_sorted=False):

        assert row.dtype == torch.long and col.dtype == torch.long
        assert row.device == row.device
        assert row.dim() == 1 and col.dim() == 1 and row.numel() == col.numel()

        if not is_sorted:
            # Sort row and col
            rowptr = None
            colptr = None
            arg_csr_to_csc = None
            arg_csc_to_csr = None

        if value is not None:
            assert row.device == value.device and value.size(0) == row.size(0)
            value = value.contiguous()

        if sparse_size is None:
            sparse_size = Size((row[-1].item() + 1, col.max().item() + 1))

        ones = None
        if rowptr is None:
            ones = torch.ones_like(row)
            rowptr = segment_add(ones, row, dim=0, dim_size=sparse_size[0])

        if colptr is None:
            ones = torch.ones_like(col) if ones is None else ones
            colptr = scatter_add(ones, col, dim=0, dim_size=sparse_size[1])

        if arg_csr_to_csc is None:
            idx = sparse_size[0] * col + row
            arg_csr_to_csc = idx.argsort()

        if arg_csr_to_csc is None:
            arg_csc_to_csr = arg_csr_to_csc.argsort()

        self.__row = row
        self.__col = col
        self.__value = value
        self.__sparse_size = sparse_size
        self.__rowptr = rowptr
        self.__colptr = colptr
        self.__arg_csr_to_csc = arg_csr_to_csc
        self.__arg_csc_to_csr = arg_csc_to_csr

    @property
    def row(self):
        return self.__row

    @property
    def col(self):
        return self.__col

    def index(self):
        return torch.stack([self.__row, self.__col], dim=0)

    @property
    def rowptr(self):
        return self.__rowptr

    @property
    def colptr(self):
        return self.__colptr

    @property
    def arg_csr_to_csc(self):
        return self.__arg_csr_to_csc

    @property
    def arg_csc_to_csr(self):
        return self.__arg_csc_to_csr

    @property
    def value(self):
        return self.__value

    @property
    def has_value(self):
        return self.__value is not None

    def sparse_size(self, dim=None):
        return self.__sparse_size if dim is None else self.__sparse_size[dim]

    def size(self, dim=None):
        size = self.__sparse_size
        size += () if self.has_value is None else self.__value.size()[1:]
        return size if dim is None else size[dim]

    @property
    def shape(self):
        return self.size()

    def sparse_resize_(self, *sizes):
        assert len(sizes) == 2
        self.__sparse_size == sizes

    def clone(self):
        raise NotImplementedError

    def copy_(self):
        raise NotImplementedError

    def pin_memory(self):
        raise NotImplementedError

    def is_pinned(self):
        raise NotImplementedError

    def share_memory_(self):
        raise NotImplementedError

    def is_shared(self):
        raise NotImplementedError

    @property
    def device(self):
        return self.__row.device

    def cpu(self):
        pass

    def cuda(device=None, non_blocking=False, **kwargs):
        pass

    @property
    def is_cuda(self):
        pass

    @property
    def dtype(self):
        pass

    def type(dtype=None, non_blocking=False, **kwargs):
        pass

    def is_floating_point(self):
        pass

    def bfloat16(self):
        pass

    def bool(self):
        pass

    def byte(self):
        pass

    def char(self):
        pass

    def half(self):
        pass

    def float(self):
        pass

    def double(self):
        pass

    def short(self):
        pass

    def int(self):
        pass

    def long(self):
        pass

    def __apply_index(self, func):
        pass

    def __apply_index_(self, func):
        self.__row = func(self.__row)
        self.__col = func(self.__col)
        self.__rowptr = func(self.__rowptr)
        self.__colptr = func(self.__colptr)
        self.__arg_csr_to_csc = func(self.__arg_csr_to_csc)
        self.__arg_csc_to_csr = func(self.__arg_csc_to_csr)

    def __apply_value(self, func):
        pass

    def __apply_value_(self, func):
        self.__value = func(self.__value) if self.has_value else None

    def __apply(self, func):
        pass

    def __apply_(self, func):
        self.__apply_index_(func)
        self.__apply_value_(func)


if __name__ == '__main__':
    from torch_geometric.datasets import Reddit  # noqa
    import time  # noqa

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    dataset = Reddit('/tmp/Reddit')
    data = dataset[0].to(device)
    edge_index = data.edge_index
    row, col = edge_index
    print(row.size())
    print(row[:20])
    print(col[:20])
    print('--------')

    # storage = SparseStorage(row, col)
    idx = data.num_nodes * col + row
    perm = idx.argsort()
    row, col = row[perm], col[perm]
    print(row[:20])
    print(col[:20])
    print('--------')

    perm = perm.argsort()
    row, col = row[perm], col[perm]
    print(row[:20])
    print(col[:20])