test_spspmm.py 1.5 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
Mario Geiger's avatar
Mario Geiger committed
5
from torch_sparse import spspmm, SparseTensor
rusty1s's avatar
rusty1s committed
6

rusty1s's avatar
rusty1s committed
7
from .utils import grad_dtypes, devices, tensor
rusty1s's avatar
rusty1s committed
8
9


rusty1s's avatar
rusty1s committed
10
@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
rusty1s's avatar
rusty1s committed
11
12
13
14
15
16
17
18
19
def test_spspmm(dtype, device):
    indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]], device=device)
    valueA = tensor([1, 2, 3, 4, 5], dtype, device)
    indexB = torch.tensor([[0, 2], [1, 0]], device=device)
    valueB = tensor([2, 4], dtype, device)

    indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
    assert indexC.tolist() == [[0, 1, 2], [0, 1, 1]]
    assert valueC.tolist() == [8, 6, 8]
Mario Geiger's avatar
Mario Geiger committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_sparse_tensor_spspmm(dtype, device):
    x = SparseTensor(
        row=torch.tensor(
            [0, 1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9],
            device=device
        ),
        col=torch.tensor(
            [0, 5, 10, 15, 1, 2, 3, 7, 13, 6, 9, 5, 10, 15, 11, 14, 5, 15],
            device=device
        ),
        value=torch.tensor(
            [1, 3**-0.5, 3**-0.5, 3**-0.5, 1, 1, 1, -2**-0.5, -2**-0.5,
             -2**-0.5, -2**-0.5, 6**-0.5, -6**0.5 / 3, 6**-0.5, -2**-0.5,
             -2**-0.5, 2**-0.5, -2**-0.5],
            dtype=dtype, device=device
        ),
    )

    i0 = torch.eye(10, dtype=dtype, device=device)

    i1 = x @ x.to_dense().t()
    assert torch.allclose(i0, i1)

    i1 = x @ x.t()
    i1 = i1.to_dense()
    assert torch.allclose(i0, i1)