from itertools import product import pytest import torch from torch_sparse import spspmm, SparseTensor from .utils import grad_dtypes, devices, tensor @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_spspmm(dtype, device): indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]], device=device) valueA = tensor([1, 2, 3, 4, 5], dtype, device) indexB = torch.tensor([[0, 2], [1, 0]], device=device) valueB = tensor([2, 4], dtype, device) indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2) assert indexC.tolist() == [[0, 1, 2], [0, 1, 1]] assert valueC.tolist() == [8, 6, 8] @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_sparse_tensor_spspmm(dtype, device): x = SparseTensor( row=torch.tensor( [0, 1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9], device=device ), col=torch.tensor( [0, 5, 10, 15, 1, 2, 3, 7, 13, 6, 9, 5, 10, 15, 11, 14, 5, 15], device=device ), value=torch.tensor( [1, 3**-0.5, 3**-0.5, 3**-0.5, 1, 1, 1, -2**-0.5, -2**-0.5, -2**-0.5, -2**-0.5, 6**-0.5, -6**0.5 / 3, 6**-0.5, -2**-0.5, -2**-0.5, 2**-0.5, -2**-0.5], dtype=dtype, device=device ), ) i0 = torch.eye(10, dtype=dtype, device=device) i1 = x @ x.to_dense().t() assert torch.allclose(i0, i1) i1 = x @ x.t() i1 = i1.to_dense() assert torch.allclose(i0, i1)