README.md 7.17 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
[pypi-image]: https://badge.fury.io/py/torch-sparse.svg
[pypi-url]: https://pypi.python.org/pypi/torch-sparse
[build-image]: https://travis-ci.org/rusty1s/pytorch_sparse.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_sparse
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
# PyTorch Sparse
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
15

rusty1s's avatar
linting  
rusty1s committed
16
[PyTorch](http://pytorch.org/) completely lacks autograd support and operations such as sparse sparse matrix multiplication, but is heavily working on improvement (*cf.* [this issue](https://github.com/pytorch/pytorch/issues/9674)).
rusty1s's avatar
rusty1s committed
17
In the meantime, this package consists of a small extension library of optimized sparse matrix operations with autograd support.
rusty1s's avatar
typos  
rusty1s committed
18
This package currently consists of the following methods:
rusty1s's avatar
rusty1s committed
19

rusty1s's avatar
rusty1s committed
20
21
22
* **[Coalesce](#coalesce)**
* **[Transpose](#transpose)**
* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
rusty1s's avatar
docs  
rusty1s committed
23
* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**
rusty1s's avatar
rusty1s committed
24
25

All included operations work on varying data types and are implemented both for CPU and GPU.
rusty1s's avatar
rusty1s committed
26
27
To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.
rusty1s's avatar
rusty1s committed
28
29
30

## Installation

rusty1s's avatar
rusty1s committed
31
Ensure that at least PyTorch 1.1.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
32
33

```
rusty1s's avatar
rusty1s committed
34
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
typo  
rusty1s committed
35
>>> 1.1.0
rusty1s's avatar
rusty1s committed
36

rusty1s's avatar
rusty1s committed
37
$ echo $PATH
rusty1s's avatar
rusty1s committed
38
>>> /usr/local/cuda/bin:...
rusty1s's avatar
rusty1s committed
39
40

$ echo $CPATH
rusty1s's avatar
rusty1s committed
41
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
42
43
44
45
46
```

Then run:

```
rusty1s's avatar
rusty1s committed
47
pip install torch-scatter torch-sparse
rusty1s's avatar
rusty1s committed
48
49
```

rusty1s's avatar
cleanup  
rusty1s committed
50
If you are running into any installation problems, please create an [issue](https://github.com/rusty1s/pytorch_sparse/issues).
rusty1s's avatar
rusty1s committed
51
Be sure to import `torch` first before using this package to resolve symbols the dynamic linker must see.
rusty1s's avatar
links  
rusty1s committed
52

rusty1s's avatar
rusty1s committed
53
## Coalesce
rusty1s's avatar
rusty1s committed
54

rusty1s's avatar
docs  
rusty1s committed
55
```
rusty1s's avatar
rusty1s committed
56
torch_sparse.coalesce(index, value, m, n, op="add", fill_value=0) -> (torch.LongTensor, torch.Tensor)
rusty1s's avatar
docs  
rusty1s committed
57
58
```

59
Row-wise sorts `index` and removes duplicate entries.
rusty1s's avatar
rusty1s committed
60
61
62
63
64
65
66
Duplicate entries are removed by scattering them together.
For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.

### Parameters

* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
67
68
* **m** *(int)* - The first dimension of corresponding dense matrix.
* **n** *(int)* - The second dimension of corresponding dense matrix.
rusty1s's avatar
docs  
rusty1s committed
69
70
* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
* **fill_value** *(int, optional)* - The initial fill value of scatter operation. (default: `0`)
rusty1s's avatar
rusty1s committed
71
72
73

### Returns

rusty1s's avatar
docs  
rusty1s committed
74
75
* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
rusty1s's avatar
rusty1s committed
76
77

### Example
rusty1s's avatar
docs  
rusty1s committed
78
79

```python
ekka's avatar
ekka committed
80
import torch
rusty1s's avatar
rusty1s committed
81
82
83
84
from torch_sparse import coalesce

index = torch.tensor([[1, 0, 1, 0, 2, 1],
                      [0, 1, 1, 1, 0, 0]])
rusty1s's avatar
rusty1s committed
85
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
rusty1s's avatar
docs  
rusty1s committed
86

rusty1s's avatar
rusty1s committed
87
index, value = coalesce(index, value, m=3, n=2)
rusty1s's avatar
docs  
rusty1s committed
88
89
```

rusty1s's avatar
rusty1s committed
90
91
92
93
94
```
print(index)
tensor([[0, 1, 1, 2],
        [1, 0, 1, 0]])
print(value)
rusty1s's avatar
rusty1s committed
95
96
97
98
tensor([[6.0, 8.0],
        [7.0, 9.0],
        [3.0, 4.0],
        [5.0, 6.0]])
rusty1s's avatar
rusty1s committed
99
```
rusty1s's avatar
docs  
rusty1s committed
100

rusty1s's avatar
rusty1s committed
101
## Transpose
rusty1s's avatar
rusty1s committed
102

rusty1s's avatar
docs  
rusty1s committed
103
```
rusty1s's avatar
rusty1s committed
104
torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
rusty1s's avatar
docs  
rusty1s committed
105
106
```

rusty1s's avatar
rusty1s committed
107
108
109
110
111
112
Transposes dimensions 0 and 1 of a sparse matrix.

### Parameters

* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
113
114
* **m** *(int)* - The first dimension of corresponding dense matrix.
* **n** *(int)* - The second dimension of corresponding dense matrix.
115
* **coalesce** *(bool, optional)* - To return coalesced index and value or not (default: `True`)
rusty1s's avatar
rusty1s committed
116
117
118

### Returns

rusty1s's avatar
docs  
rusty1s committed
119
120
* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
rusty1s's avatar
rusty1s committed
121
122

### Example
rusty1s's avatar
docs  
rusty1s committed
123
124

```python
ekka's avatar
ekka committed
125
import torch
rusty1s's avatar
rusty1s committed
126
127
128
129
from torch_sparse import transpose

index = torch.tensor([[1, 0, 1, 0, 2, 1],
                      [0, 1, 1, 1, 0, 0]])
rusty1s's avatar
rusty1s committed
130
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
rusty1s's avatar
docs  
rusty1s committed
131

rusty1s's avatar
docs  
rusty1s committed
132
index, value = transpose(index, value, 3, 2)
rusty1s's avatar
docs  
rusty1s committed
133
134
```

rusty1s's avatar
rusty1s committed
135
136
137
138
139
```
print(index)
tensor([[0, 0, 1, 1],
        [1, 2, 0, 1]])
print(value)
rusty1s's avatar
rusty1s committed
140
141
142
143
tensor([[7.0, 9.0],
        [5.0, 6.0],
        [6.0, 8.0],
        [3.0, 4.0]])
rusty1s's avatar
rusty1s committed
144
```
rusty1s's avatar
docs  
rusty1s committed
145

rusty1s's avatar
rusty1s committed
146
## Sparse Dense Matrix Multiplication
rusty1s's avatar
rusty1s committed
147

rusty1s's avatar
docs  
rusty1s committed
148
```
149
torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
rusty1s's avatar
docs  
rusty1s committed
150
151
```

rusty1s's avatar
rusty1s committed
152
153
154
Matrix product of a sparse matrix with a dense matrix.

### Parameters
rusty1s's avatar
docs  
rusty1s committed
155

rusty1s's avatar
rusty1s committed
156
157
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
158
159
* **m** *(int)* - The first dimension of corresponding dense matrix.
* **n** *(int)* - The second dimension of corresponding dense matrix.
rusty1s's avatar
docs  
rusty1s committed
160
* **matrix** *(Tensor)* - The dense matrix.
rusty1s's avatar
rusty1s committed
161
162
163

### Returns

rusty1s's avatar
docs  
rusty1s committed
164
* **out** *(Tensor)* - The dense output matrix.
rusty1s's avatar
rusty1s committed
165
166
167
168

### Example

```python
ekka's avatar
ekka committed
169
import torch
rusty1s's avatar
rusty1s committed
170
171
172
173
from torch_sparse import spmm

index = torch.tensor([[0, 0, 1, 2, 2],
                      [0, 2, 1, 0, 1]])
rusty1s's avatar
rusty1s committed
174
175
value = torch.Tensor([1, 2, 4, 1, 3])
matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
rusty1s's avatar
rusty1s committed
176

rusty1s's avatar
rusty1s committed
177
out = spmm(index, value, 3, 3, matrix)
rusty1s's avatar
rusty1s committed
178
179
180
181
```

```
print(out)
182
183
184
tensor([[7.0, 16.0],
        [8.0, 20.0],
        [7.0, 19.0]])
rusty1s's avatar
docs  
rusty1s committed
185
```
rusty1s's avatar
rusty1s committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

## Sparse Sparse Matrix Multiplication

```
torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
```

Matrix product of two sparse tensors.
Both input sparse matrices need to be **coalesced**.

### Parameters

* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
202
203
204
* **m** *(int)* - The first dimension of first corresponding dense matrix.
* **k** *(int)* - The second dimension of first corresponding dense matrix and first dimension of second corresponding dense matrix.
* **n** *(int)* - The second dimension of second corresponding dense matrix.
rusty1s's avatar
rusty1s committed
205
206
207

### Returns

rusty1s's avatar
docs  
rusty1s committed
208
209
* **index** *(LongTensor)* - The output index tensor of sparse matrix.
* **value** *(Tensor)* - The output value tensor of sparse matrix.
rusty1s's avatar
rusty1s committed
210
211
212
213

### Example

```python
ekka's avatar
ekka committed
214
import torch
rusty1s's avatar
docs  
rusty1s committed
215
216
from torch_sparse import spspmm

rusty1s's avatar
rusty1s committed
217
indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
rusty1s's avatar
rusty1s committed
218
valueA = torch.Tensor([1, 2, 3, 4, 5])
rusty1s's avatar
rusty1s committed
219
220

indexB = torch.tensor([[0, 2], [1, 0]])
rusty1s's avatar
rusty1s committed
221
valueB = torch.Tensor([2, 4])
rusty1s's avatar
docs  
rusty1s committed
222

rusty1s's avatar
rusty1s committed
223
224
225
226
indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
```

```
ekka's avatar
ekka committed
227
print(indexC)
rusty1s's avatar
rusty1s committed
228
229
tensor([[0, 1, 2],
        [0, 1, 1]])
ekka's avatar
ekka committed
230
print(valueC)
231
tensor([8.0, 6.0, 8.0])
rusty1s's avatar
docs  
rusty1s committed
232
233
```

rusty1s's avatar
rusty1s committed
234
235
236
237
238
## Running tests

```
python setup.py test
```