[pypi-image]: https://badge.fury.io/py/torch-sparse.svg [pypi-url]: https://pypi.python.org/pypi/torch-sparse [build-image]: https://travis-ci.org/rusty1s/pytorch_sparse.svg?branch=master [build-url]: https://travis-ci.org/rusty1s/pytorch_sparse [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master # PyTorch Sparse [![PyPI Version][pypi-image]][pypi-url] [![Build Status][build-image]][build-url] [![Code Coverage][coverage-image]][coverage-url] -------------------------------------------------------------------------------- [PyTorch](http://pytorch.org/) completely lacks autograd support and operations such as sparse sparse matrix multiplication, but is heavily working on improvement (*cf.* [this issue](https://github.com/pytorch/pytorch/issues/9674)). In the meantime, this package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently consists of the following methods: * **[Coalesce](#coalesce)** * **[Transpose](#transpose)** * **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)** * **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)** All included operations work on varying data types and are implemented both for CPU and GPU. To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)). Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable. ## Installation Ensure that at least PyTorch 1.1.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: ``` $ python -c "import torch; print(torch.__version__)" >>> 1.1.0 $ echo $PATH >>> /usr/local/cuda/bin:... $ echo $CPATH >>> /usr/local/cuda/include:... ``` Then run: ``` pip install torch-scatter torch-sparse ``` If you are running into any installation problems, please create an [issue](https://github.com/rusty1s/pytorch_sparse/issues). Be sure to import `torch` first before using this package to resolve symbols the dynamic linker must see. ## Coalesce ``` torch_sparse.coalesce(index, value, m, n, op="add", fill_value=0) -> (torch.LongTensor, torch.Tensor) ``` Row-wise sorts `index` and removes duplicate entries. Duplicate entries are removed by scattering them together. For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used. ### Parameters * **index** *(LongTensor)* - The index tensor of sparse matrix. * **value** *(Tensor)* - The value tensor of sparse matrix. * **m** *(int)* - The first dimension of corresponding dense matrix. * **n** *(int)* - The second dimension of corresponding dense matrix. * **op** *(string, optional)* - The scatter operation to use. (default: `"add"`) * **fill_value** *(int, optional)* - The initial fill value of scatter operation. (default: `0`) ### Returns * **index** *(LongTensor)* - The coalesced index tensor of sparse matrix. * **value** *(Tensor)* - The coalesced value tensor of sparse matrix. ### Example ```python import torch from torch_sparse import coalesce index = torch.tensor([[1, 0, 1, 0, 2, 1], [0, 1, 1, 1, 0, 0]]) value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) index, value = coalesce(index, value, m=3, n=2) ``` ``` print(index) tensor([[0, 1, 1, 2], [1, 0, 1, 0]]) print(value) tensor([[6.0, 8.0], [7.0, 9.0], [3.0, 4.0], [5.0, 6.0]]) ``` ## Transpose ``` torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor) ``` Transposes dimensions 0 and 1 of a sparse matrix. ### Parameters * **index** *(LongTensor)* - The index tensor of sparse matrix. * **value** *(Tensor)* - The value tensor of sparse matrix. * **m** *(int)* - The first dimension of corresponding dense matrix. * **n** *(int)* - The second dimension of corresponding dense matrix. * **coalesce** *(bool, optional)* - To return coalesced index and value or not (default: `True`) ### Returns * **index** *(LongTensor)* - The transposed index tensor of sparse matrix. * **value** *(Tensor)* - The transposed value tensor of sparse matrix. ### Example ```python import torch from torch_sparse import transpose index = torch.tensor([[1, 0, 1, 0, 2, 1], [0, 1, 1, 1, 0, 0]]) value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) index, value = transpose(index, value, 3, 2) ``` ``` print(index) tensor([[0, 0, 1, 1], [1, 2, 0, 1]]) print(value) tensor([[7.0, 9.0], [5.0, 6.0], [6.0, 8.0], [3.0, 4.0]]) ``` ## Sparse Dense Matrix Multiplication ``` torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor ``` Matrix product of a sparse matrix with a dense matrix. ### Parameters * **index** *(LongTensor)* - The index tensor of sparse matrix. * **value** *(Tensor)* - The value tensor of sparse matrix. * **m** *(int)* - The first dimension of corresponding dense matrix. * **n** *(int)* - The second dimension of corresponding dense matrix. * **matrix** *(Tensor)* - The dense matrix. ### Returns * **out** *(Tensor)* - The dense output matrix. ### Example ```python import torch from torch_sparse import spmm index = torch.tensor([[0, 0, 1, 2, 2], [0, 2, 1, 0, 1]]) value = torch.Tensor([1, 2, 4, 1, 3]) matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]]) out = spmm(index, value, 3, 3, matrix) ``` ``` print(out) tensor([[7.0, 16.0], [8.0, 20.0], [7.0, 19.0]]) ``` ## Sparse Sparse Matrix Multiplication ``` torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor) ``` Matrix product of two sparse tensors. Both input sparse matrices need to be **coalesced**. ### Parameters * **indexA** *(LongTensor)* - The index tensor of first sparse matrix. * **valueA** *(Tensor)* - The value tensor of first sparse matrix. * **indexB** *(LongTensor)* - The index tensor of second sparse matrix. * **valueB** *(Tensor)* - The value tensor of second sparse matrix. * **m** *(int)* - The first dimension of first corresponding dense matrix. * **k** *(int)* - The second dimension of first corresponding dense matrix and first dimension of second corresponding dense matrix. * **n** *(int)* - The second dimension of second corresponding dense matrix. ### Returns * **index** *(LongTensor)* - The output index tensor of sparse matrix. * **value** *(Tensor)* - The output value tensor of sparse matrix. ### Example ```python import torch from torch_sparse import spspmm indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]]) valueA = torch.Tensor([1, 2, 3, 4, 5]) indexB = torch.tensor([[0, 2], [1, 0]]) valueB = torch.Tensor([2, 4]) indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2) ``` ``` print(indexC) tensor([[0, 1, 2], [0, 1, 1]]) print(valueC) tensor([8.0, 6.0, 8.0]) ``` ## Running tests ``` python setup.py test ```