storage.py 20.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import warnings
rusty1s's avatar
rusty1s committed
2
from typing import Optional, List
rusty1s's avatar
rusty1s committed
3

rusty1s's avatar
rusty1s committed
4
import torch
rusty1s's avatar
rusty1s committed
5
from torch_scatter import segment_csr, scatter_add
rusty1s's avatar
rusty1s committed
6
from torch_sparse.utils import Final
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
layouts: Final[List[str]] = ['coo', 'csr', 'csc']
rusty1s's avatar
rusty1s committed
9
10


rusty1s's avatar
rusty1s committed
11
def get_layout(layout: Optional[str] = None) -> str:
rusty1s's avatar
rusty1s committed
12
13
14
15
    if layout is None:
        layout = 'coo'
        warnings.warn('`layout` argument unset, using default layout '
                      '"coo". This may lead to unexpected behaviour.')
rusty1s's avatar
rusty1s committed
16
    assert layout == 'coo' or layout == 'csr' or layout == 'csc'
rusty1s's avatar
rusty1s committed
17
18
19
    return layout


rusty1s's avatar
rusty1s committed
20
@torch.jit.script
rusty1s's avatar
rusty1s committed
21
class SparseStorage(object):
rusty1s's avatar
rusty1s committed
22
23
24
25
    _row: Optional[torch.Tensor]
    _rowptr: Optional[torch.Tensor]
    _col: torch.Tensor
    _value: Optional[torch.Tensor]
rusty1s's avatar
rusty1s committed
26
    _sparse_sizes: List[int]
rusty1s's avatar
rusty1s committed
27
28
29
30
31
32
33
34
35
36
    _rowcount: Optional[torch.Tensor]
    _colptr: Optional[torch.Tensor]
    _colcount: Optional[torch.Tensor]
    _csr2csc: Optional[torch.Tensor]
    _csc2csr: Optional[torch.Tensor]

    def __init__(self, row: Optional[torch.Tensor] = None,
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
37
                 sparse_sizes: Optional[List[int]] = None,
rusty1s's avatar
rusty1s committed
38
39
40
41
42
43
                 rowcount: Optional[torch.Tensor] = None,
                 colptr: Optional[torch.Tensor] = None,
                 colcount: Optional[torch.Tensor] = None,
                 csr2csc: Optional[torch.Tensor] = None,
                 csc2csr: Optional[torch.Tensor] = None,
                 is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
44

rusty1s's avatar
rusty1s committed
45
46
47
48
        assert row is not None or rowptr is not None
        assert col is not None
        assert col.dtype == torch.long
        assert col.dim() == 1
rusty1s's avatar
rusty1s committed
49
        col = col.contiguous()
rusty1s's avatar
rusty1s committed
50

rusty1s's avatar
rusty1s committed
51
        if sparse_sizes is None:
rusty1s's avatar
rusty1s committed
52
53
54
55
56
57
            if rowptr is not None:
                M = rowptr.numel() - 1
            elif row is not None:
                M = row.max().item() + 1
            else:
                raise ValueError
rusty1s's avatar
rusty1s committed
58
            N = col.max().item() + 1
rusty1s's avatar
rusty1s committed
59
            sparse_sizes = torch.Size([int(M), int(N)])
rusty1s's avatar
rusty1s committed
60
        else:
rusty1s's avatar
rusty1s committed
61
            assert len(sparse_sizes) == 2
rusty1s's avatar
rusty1s committed
62

rusty1s's avatar
rusty1s committed
63
64
65
66
67
        if row is not None:
            assert row.dtype == torch.long
            assert row.device == col.device
            assert row.dim() == 1
            assert row.numel() == col.numel()
rusty1s's avatar
rusty1s committed
68
            row = row.contiguous()
rusty1s's avatar
rusty1s committed
69

rusty1s's avatar
rusty1s committed
70
        if rowptr is not None:
rusty1s's avatar
rusty1s committed
71
            assert rowptr.dtype == torch.long
rusty1s's avatar
rusty1s committed
72
73
            assert rowptr.device == col.device
            assert rowptr.dim() == 1
rusty1s's avatar
rusty1s committed
74
            assert rowptr.numel() - 1 == sparse_sizes[0]
rusty1s's avatar
rusty1s committed
75
            rowptr = rowptr.contiguous()
rusty1s's avatar
rusty1s committed
76

rusty1s's avatar
rusty1s committed
77
78
79
        if value is not None:
            assert value.device == col.device
            assert value.size(0) == col.size(0)
rusty1s's avatar
rusty1s committed
80
            value = value.contiguous()
rusty1s's avatar
rusty1s committed
81
82
83
84
85

        if rowcount is not None:
            assert rowcount.dtype == torch.long
            assert rowcount.device == col.device
            assert rowcount.dim() == 1
rusty1s's avatar
rusty1s committed
86
            assert rowcount.numel() == sparse_sizes[0]
rusty1s's avatar
rusty1s committed
87
            rowcount = rowcount.contiguous()
rusty1s's avatar
rusty1s committed
88

rusty1s's avatar
rusty1s committed
89
        if colptr is not None:
rusty1s's avatar
rusty1s committed
90
            assert colptr.dtype == torch.long
rusty1s's avatar
rusty1s committed
91
92
            assert colptr.device == col.device
            assert colptr.dim() == 1
rusty1s's avatar
rusty1s committed
93
            assert colptr.numel() - 1 == sparse_sizes[1]
rusty1s's avatar
rusty1s committed
94
            colptr = colptr.contiguous()
rusty1s's avatar
rusty1s committed
95
96
97
98
99

        if colcount is not None:
            assert colcount.dtype == torch.long
            assert colcount.device == col.device
            assert colcount.dim() == 1
rusty1s's avatar
rusty1s committed
100
            assert colcount.numel() == sparse_sizes[1]
rusty1s's avatar
rusty1s committed
101
            colcount = colcount.contiguous()
rusty1s's avatar
rusty1s committed
102

rusty1s's avatar
rusty1s committed
103
104
        if csr2csc is not None:
            assert csr2csc.dtype == torch.long
rusty1s's avatar
rusty1s committed
105
            assert csr2csc.device == col.device
rusty1s's avatar
rusty1s committed
106
            assert csr2csc.dim() == 1
rusty1s's avatar
rusty1s committed
107
            assert csr2csc.numel() == col.size(0)
rusty1s's avatar
rusty1s committed
108
            csr2csc = csr2csc.contiguous()
rusty1s's avatar
rusty1s committed
109

rusty1s's avatar
rusty1s committed
110
111
        if csc2csr is not None:
            assert csc2csr.dtype == torch.long
rusty1s's avatar
rusty1s committed
112
            assert csc2csr.device == col.device
rusty1s's avatar
rusty1s committed
113
            assert csc2csr.dim() == 1
rusty1s's avatar
rusty1s committed
114
            assert csc2csr.numel() == col.size(0)
rusty1s's avatar
rusty1s committed
115
            csc2csr = csc2csr.contiguous()
rusty1s's avatar
rusty1s committed
116

rusty1s's avatar
rusty1s committed
117
118
119
        self._row = row
        self._rowptr = rowptr
        self._col = col
rusty1s's avatar
rusty1s committed
120
        self._value = value
rusty1s's avatar
rusty1s committed
121
        self._sparse_sizes = sparse_sizes
rusty1s's avatar
rusty1s committed
122
        self._rowcount = rowcount
rusty1s's avatar
rusty1s committed
123
        self._colptr = colptr
rusty1s's avatar
rusty1s committed
124
        self._colcount = colcount
rusty1s's avatar
rusty1s committed
125
126
        self._csr2csc = csr2csc
        self._csc2csr = csc2csr
rusty1s's avatar
rusty1s committed
127

rusty1s's avatar
rusty1s committed
128
        if not is_sorted:
rusty1s's avatar
rusty1s committed
129
            idx = col.new_zeros(col.numel() + 1)
rusty1s's avatar
rusty1s committed
130
            idx[1:] = sparse_sizes[1] * self.row() + col
rusty1s's avatar
rusty1s committed
131
            if (idx[1:] < idx[:-1]).any():
rusty1s's avatar
rusty1s committed
132
                perm = idx[1:].argsort()
rusty1s's avatar
rusty1s committed
133
134
135
136
                self._row = self.row()[perm]
                self._col = col[perm]
                if value is not None:
                    self._value = value[perm]
rusty1s's avatar
rusty1s committed
137
138
139
                self._csr2csc = None
                self._csc2csr = None

rusty1s's avatar
rusty1s committed
140
    def has_row(self) -> bool:
rusty1s's avatar
rusty1s committed
141
        return self._row is not None
rusty1s's avatar
rusty1s committed
142

rusty1s's avatar
rusty1s committed
143
    def row(self):
rusty1s's avatar
rusty1s committed
144
145
146
        row = self._row
        if row is not None:
            return row
rusty1s's avatar
rusty1s committed
147

rusty1s's avatar
rusty1s committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        rowptr = self._rowptr
        if rowptr is not None:
            if rowptr.is_cuda:
                row = torch.ops.torch_sparse_cuda.ptr2ind(
                    rowptr, self._col.numel())
            else:
                if rowptr.is_cuda:
                    row = torch.ops.torch_sparse_cuda.ptr2ind(
                        rowptr, self._col.numel())
                else:
                    row = torch.ops.torch_sparse_cpu.ptr2ind(
                        rowptr, self._col.numel())
            self._row = row
            return row

        raise ValueError

    def has_rowptr(self) -> bool:
rusty1s's avatar
rusty1s committed
166
167
        return self._rowptr is not None

rusty1s's avatar
rusty1s committed
168
169
170
171
    def rowptr(self) -> torch.Tensor:
        rowptr = self._rowptr
        if rowptr is not None:
            return rowptr
rusty1s's avatar
rusty1s committed
172

rusty1s's avatar
rusty1s committed
173
174
175
176
        row = self._row
        if row is not None:
            if row.is_cuda:
                rowptr = torch.ops.torch_sparse_cuda.ind2ptr(
rusty1s's avatar
rusty1s committed
177
                    row, self._sparse_sizes[0])
rusty1s's avatar
rusty1s committed
178
179
            else:
                rowptr = torch.ops.torch_sparse_cpu.ind2ptr(
rusty1s's avatar
rusty1s committed
180
                    row, self._sparse_sizes[0])
rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
            self._rowptr = rowptr
            return rowptr

        raise ValueError

    def col(self) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
187
        return self._col
rusty1s's avatar
rusty1s committed
188

rusty1s's avatar
rusty1s committed
189
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
190
        return self._value is not None
rusty1s's avatar
rusty1s committed
191

rusty1s's avatar
rusty1s committed
192
    def value(self) -> Optional[torch.Tensor]:
rusty1s's avatar
rusty1s committed
193
194
        return self._value

rusty1s's avatar
rusty1s committed
195
196
197
198
199
200
201
202
    def set_value_(self, value: Optional[torch.Tensor],
                   layout: Optional[str] = None):
        if value is not None:
            if get_layout(layout) == 'csc2csr':
                value = value[self.csc2csr()]
            value = value.contiguous()
            assert value.device == self._col.device
            assert value.size(0) == self._col.numel()
rusty1s's avatar
rusty1s committed
203

rusty1s's avatar
rusty1s committed
204
205
        self._value = value
        return self
rusty1s's avatar
rusty1s committed
206

rusty1s's avatar
rusty1s committed
207
208
209
210
211
212
213
214
    def set_value(self, value: Optional[torch.Tensor],
                  layout: Optional[str] = None):
        if value is not None:
            if get_layout(layout) == 'csc2csr':
                value = value[self.csc2csr()]
            value = value.contiguous()
            assert value.device == self._col.device
            assert value.size(0) == self._col.numel()
rusty1s's avatar
rusty1s committed
215

rusty1s's avatar
rusty1s committed
216
        return SparseStorage(row=self._row, rowptr=self._rowptr, col=self._col,
rusty1s's avatar
rusty1s committed
217
                             value=value, sparse_sizes=self._sparse_sizes,
rusty1s's avatar
rusty1s committed
218
219
220
                             rowcount=self._rowcount, colptr=self._colptr,
                             colcount=self._colcount, csr2csc=self._csr2csc,
                             csc2csr=self._csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
221

rusty1s's avatar
rusty1s committed
222
223
    def sparse_sizes(self) -> List[int]:
        return self._sparse_sizes
rusty1s's avatar
rusty1s committed
224

rusty1s's avatar
rusty1s committed
225
226
    def sparse_size(self, dim: int) -> int:
        return self._sparse_sizes[dim]
rusty1s's avatar
rusty1s committed
227

rusty1s's avatar
rusty1s committed
228
229
230
    def sparse_resize(self, sparse_sizes: List[int]):
        assert len(sparse_sizes) == 2
        old_sparse_sizes, nnz = self._sparse_sizes, self._col.numel()
rusty1s's avatar
rusty1s committed
231

rusty1s's avatar
rusty1s committed
232
        diff_0 = sparse_sizes[0] - old_sparse_sizes[0]
rusty1s's avatar
rusty1s committed
233
234
235
236
237
238
239
240
241
242
243
244
        rowcount, rowptr = self._rowcount, self._rowptr
        if diff_0 > 0:
            if rowptr is not None:
                rowptr = torch.cat([rowptr, rowptr.new_full((diff_0, ), nnz)])
            if rowcount is not None:
                rowcount = torch.cat([rowcount, rowcount.new_zeros(diff_0)])
        else:
            if rowptr is not None:
                rowptr = rowptr[:-diff_0]
            if rowcount is not None:
                rowcount = rowcount[:-diff_0]

rusty1s's avatar
rusty1s committed
245
        diff_1 = sparse_sizes[1] - old_sparse_sizes[1]
rusty1s's avatar
rusty1s committed
246
247
248
249
250
251
252
253
254
255
256
257
258
        colcount, colptr = self._colcount, self._colptr
        if diff_1 > 0:
            if colptr is not None:
                colptr = torch.cat([colptr, colptr.new_full((diff_1, ), nnz)])
            if colcount is not None:
                colcount = torch.cat([colcount, colcount.new_zeros(diff_1)])
        else:
            if colptr is not None:
                colptr = colptr[:-diff_1]
            if colcount is not None:
                colcount = colcount[:-diff_1]

        return SparseStorage(row=self._row, rowptr=rowptr, col=self._col,
rusty1s's avatar
rusty1s committed
259
                             value=self._value, sparse_sizes=sparse_sizes,
rusty1s's avatar
rusty1s committed
260
261
262
                             rowcount=rowcount, colptr=colptr,
                             colcount=colcount, csr2csc=self._csr2csc,
                             csc2csr=self._csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
263
264

    def has_rowcount(self) -> bool:
rusty1s's avatar
rusty1s committed
265
266
        return self._rowcount is not None

rusty1s's avatar
rusty1s committed
267
268
269
270
271
272
273
274
275
    def rowcount(self) -> torch.Tensor:
        rowcount = self._rowcount
        if rowcount is not None:
            return rowcount

        rowptr = self.rowptr()
        rowcount = rowptr[1:] - rowptr[1:]
        self._rowcount = rowcount
        return rowcount
rusty1s's avatar
rusty1s committed
276

rusty1s's avatar
rusty1s committed
277
    def has_colptr(self) -> bool:
rusty1s's avatar
rusty1s committed
278
        return self._colptr is not None
rusty1s's avatar
rusty1s committed
279

rusty1s's avatar
rusty1s committed
280
281
282
    def colptr(self) -> torch.Tensor:
        colptr = self._colptr
        if colptr is not None:
rusty1s's avatar
rusty1s committed
283
            return colptr
rusty1s's avatar
rusty1s committed
284

rusty1s's avatar
rusty1s committed
285
286
287
        csr2csc = self._csr2csc
        if csr2csc is not None:
            colptr = torch.ops.torch_sparse_cpu.ind2ptr(
rusty1s's avatar
rusty1s committed
288
                self._col[csr2csc], self._sparse_sizes[1])
rusty1s's avatar
rusty1s committed
289
        else:
rusty1s's avatar
rusty1s committed
290
            colptr = self._col.new_zeros(self._sparse_sizes[1] + 1)
rusty1s's avatar
rusty1s committed
291
292
293
294
295
            torch.cumsum(self.colcount(), dim=0, out=colptr[1:])
        self._colptr = colptr
        return colptr

    def has_colcount(self) -> bool:
rusty1s's avatar
rusty1s committed
296
297
        return self._colcount is not None

rusty1s's avatar
rusty1s committed
298
299
300
301
302
303
304
305
    def colcount(self) -> torch.Tensor:
        colcount = self._colcount
        if colcount is not None:
            return colcount

        colptr = self._colptr
        if colptr is not None:
            colcount = colptr[1:] - colptr[1:]
rusty1s's avatar
rusty1s committed
306
        else:
rusty1s's avatar
rusty1s committed
307
308
            colcount = scatter_add(torch.ones_like(self._col), self._col,
                                   dim_size=self._sparse_sizes[1])
rusty1s's avatar
rusty1s committed
309
310
        self._colcount = colcount
        return colcount
rusty1s's avatar
rusty1s committed
311

rusty1s's avatar
rusty1s committed
312
    def has_csr2csc(self) -> bool:
rusty1s's avatar
rusty1s committed
313
        return self._csr2csc is not None
rusty1s's avatar
rusty1s committed
314

rusty1s's avatar
rusty1s committed
315
316
317
318
    def csr2csc(self) -> torch.Tensor:
        csr2csc = self._csr2csc
        if csr2csc is not None:
            return csr2csc
rusty1s's avatar
rusty1s committed
319

rusty1s's avatar
rusty1s committed
320
        idx = self._sparse_sizes[0] * self._col + self.row()
rusty1s's avatar
rusty1s committed
321
322
323
324
325
        csr2csc = idx.argsort()
        self._csr2csc = csr2csc
        return csr2csc

    def has_csc2csr(self) -> bool:
rusty1s's avatar
rusty1s committed
326
327
        return self._csc2csr is not None

rusty1s's avatar
rusty1s committed
328
329
330
331
    def csc2csr(self) -> torch.Tensor:
        csc2csr = self._csc2csr
        if csc2csr is not None:
            return csc2csr
rusty1s's avatar
rusty1s committed
332

rusty1s's avatar
rusty1s committed
333
334
335
        csc2csr = self.csr2csc().argsort()
        self._csc2csr = csc2csr
        return csc2csr
rusty1s's avatar
rusty1s committed
336

rusty1s's avatar
rusty1s committed
337
338
    def is_coalesced(self) -> bool:
        idx = self._col.new_full((self._col.numel() + 1, ), -1)
rusty1s's avatar
rusty1s committed
339
        idx[1:] = self._sparse_sizes[1] * self.row() + self._col
rusty1s's avatar
rusty1s committed
340
341
342
343
        return bool((idx[1:] > idx[:-1]).all())

    def coalesce(self, reduce: str = "add"):
        idx = self._col.new_full((self._col.numel() + 1, ), -1)
rusty1s's avatar
rusty1s committed
344
        idx[1:] = self._sparse_sizes[1] * self.row() + self._col
rusty1s's avatar
rusty1s committed
345
        mask = idx[1:] > idx[:-1]
rusty1s's avatar
rusty1s committed
346

rusty1s's avatar
rusty1s committed
347
        if mask.all():  # Skip if indices are already coalesced.
rusty1s's avatar
rusty1s committed
348
349
            return self

rusty1s's avatar
rusty1s committed
350
351
        row = self.row()[mask]
        col = self._col[mask]
rusty1s's avatar
rusty1s committed
352

rusty1s's avatar
rusty1s committed
353
354
        value = self._value
        if value is not None:
rusty1s's avatar
rusty1s committed
355
356
            ptr = mask.nonzero().flatten()
            ptr = torch.cat([ptr, ptr.new_full((1, ), value.size(0))])
rusty1s's avatar
rusty1s committed
357
            value = segment_csr(value, ptr, reduce=reduce)
rusty1s's avatar
rusty1s committed
358
359
            value = value[0] if isinstance(value, tuple) else value

rusty1s's avatar
rusty1s committed
360
        return SparseStorage(row=row, rowptr=None, col=col, value=value,
rusty1s's avatar
rusty1s committed
361
                             sparse_sizes=self._sparse_sizes, rowcount=None,
rusty1s's avatar
rusty1s committed
362
363
364
365
366
367
368
369
370
371
372
                             colptr=None, colcount=None, csr2csc=None,
                             csc2csr=None, is_sorted=True)

    def fill_cache_(self):
        self.row()
        self.rowptr()
        self.rowcount()
        self.colptr()
        self.colcount()
        self.csr2csc()
        self.csc2csr()
rusty1s's avatar
rusty1s committed
373
        return self
rusty1s's avatar
rusty1s committed
374

rusty1s's avatar
rusty1s committed
375
376
377
378
379
380
    def clear_cache_(self):
        self._rowcount = None
        self._colptr = None
        self._colcount = None
        self._csr2csc = None
        self._csc2csr = None
rusty1s's avatar
rusty1s committed
381
        return self
rusty1s's avatar
rusty1s committed
382

rusty1s's avatar
rusty1s committed
383
    def copy(self):
rusty1s's avatar
rusty1s committed
384
        return SparseStorage(row=self._row, rowptr=self._rowptr, col=self._col,
rusty1s's avatar
rusty1s committed
385
386
                             value=self._value,
                             sparse_sizes=self._sparse_sizes,
rusty1s's avatar
rusty1s committed
387
388
389
                             rowcount=self._rowcount, colptr=self._colptr,
                             colcount=self._colcount, csr2csc=self._csr2csc,
                             csc2csr=self._csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
390

rusty1s's avatar
test  
rusty1s committed
391
    def clone(self):
rusty1s's avatar
rusty1s committed
392
393
394
395
396
397
        row = self._row
        if row is not None:
            row = row.clone()
        rowptr = self._rowptr
        if rowptr is not None:
            rowptr = rowptr.clone()
rusty1s's avatar
rusty1s committed
398
        col = self._col.clone()
rusty1s's avatar
rusty1s committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        value = self._value
        if value is not None:
            value = value.clone()
        rowcount = self._rowcount
        if rowcount is not None:
            rowcount = rowcount.clone()
        colptr = self._colptr
        if colptr is not None:
            colptr = colptr.clone()
        colcount = self._colcount
        if colcount is not None:
            colcount = colcount.clone()
        csr2csc = self._csr2csc
        if csr2csc is not None:
            csr2csc = csr2csc.clone()
        csc2csr = self._csc2csr
        if csc2csr is not None:
            csc2csr = csc2csr.clone()
rusty1s's avatar
rusty1s committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        return SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                             sparse_sizes=self._sparse_sizes,
                             rowcount=rowcount, colptr=colptr,
                             colcount=colcount, csr2csc=csr2csc,
                             csc2csr=csc2csr, is_sorted=True)

    def type_as(self, tensor=torch.Tensor):
        value = self._value
        if value is not None:
            if tensor.dtype == value.dtype:
                return self
            else:
                return self.set_value(value.type_as(tensor), layout='coo')
        else:
            return self

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self._col.device:
            return self

        row = self._row
        if row is not None:
            row = row.to(tensor.device, non_blocking=non_blocking)
        rowptr = self._rowptr
        if rowptr is not None:
            rowptr = rowptr.to(tensor.device, non_blocking=non_blocking)
        col = self._col.to(tensor.device, non_blocking=non_blocking)
        value = self._value
        if value is not None:
            value = value.to(tensor.device, non_blocking=non_blocking)
        rowcount = self._rowcount
        if rowcount is not None:
            rowcount = rowcount.to(tensor.device, non_blocking=non_blocking)
        colptr = self._colptr
        if colptr is not None:
            colptr = colptr.to(tensor.device, non_blocking=non_blocking)
        colcount = self._colcount
        if colcount is not None:
            colcount = colcount.to(tensor.device, non_blocking=non_blocking)
        csr2csc = self._csr2csc
        if csr2csc is not None:
            csr2csc = csr2csc.to(tensor.device, non_blocking=non_blocking)
        csc2csr = self._csc2csr
        if csc2csr is not None:
            csc2csr = csc2csr.to(tensor.device, non_blocking=non_blocking)
        return SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                             sparse_sizes=self._sparse_sizes,
                             rowcount=rowcount, colptr=colptr,
                             colcount=colcount, csr2csc=csr2csc,
                             csc2csr=csc2csr, is_sorted=True)

    def pin_memory(self):
        row = self._row
        if row is not None:
            row = row.pin_memory()
        rowptr = self._rowptr
        if rowptr is not None:
            rowptr = rowptr.pin_memory()
        col = self._col.pin_memory()
        value = self._value
        if value is not None:
            value = value.pin_memory()
        rowcount = self._rowcount
        if rowcount is not None:
            rowcount = rowcount.pin_memory()
        colptr = self._colptr
        if colptr is not None:
            colptr = colptr.pin_memory()
        colcount = self._colcount
        if colcount is not None:
            colcount = colcount.pin_memory()
        csr2csc = self._csr2csc
        if csr2csc is not None:
            csr2csc = csr2csc.pin_memory()
        csc2csr = self._csc2csr
        if csc2csr is not None:
            csc2csr = csc2csr.pin_memory()
        return SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                             sparse_sizes=self._sparse_sizes,
rusty1s's avatar
rusty1s committed
496
497
498
                             rowcount=rowcount, colptr=colptr,
                             colcount=colcount, csr2csc=csr2csc,
                             csc2csr=csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

    def is_pinned(self) -> bool:
        is_pinned = True
        row = self._row
        if row is not None:
            is_pinned = is_pinned and row.is_pinned()
        rowptr = self._rowptr
        if rowptr is not None:
            is_pinned = is_pinned and rowptr.is_pinned()
        is_pinned = self._col.is_pinned()
        value = self._value
        if value is not None:
            is_pinned = is_pinned and value.is_pinned()
        rowcount = self._rowcount
        if rowcount is not None:
            is_pinned = is_pinned and rowcount.is_pinned()
        colptr = self._colptr
        if colptr is not None:
            is_pinned = is_pinned and colptr.is_pinned()
        colcount = self._colcount
        if colcount is not None:
            is_pinned = is_pinned and colcount.is_pinned()
        csr2csc = self._csr2csc
        if csr2csc is not None:
            is_pinned = is_pinned and csr2csc.is_pinned()
        csc2csr = self._csc2csr
        if csc2csr is not None:
            is_pinned = is_pinned and csc2csr.is_pinned()
        return is_pinned


@torch.jit.ignore
def share_memory_(self) -> SparseStorage:
    row = self._row
    if row is not None:
        row.share_memory_()
    rowptr = self._rowptr
    if rowptr is not None:
        rowptr.share_memory_()
    self._col.share_memory_()
    value = self._value
    if value is not None:
        value.share_memory_()
    rowcount = self._rowcount
    if rowcount is not None:
        rowcount.share_memory_()
    colptr = self._colptr
    if colptr is not None:
        colptr.share_memory_()
    colcount = self._colcount
    if colcount is not None:
        colcount.share_memory_()
    csr2csc = self._csr2csc
    if csr2csc is not None:
        csr2csc.share_memory_()
    csc2csr = self._csc2csr
    if csc2csr is not None:
        csc2csr.share_memory_()


@torch.jit.ignore
def is_shared(self) -> bool:
    is_shared = True
    row = self._row
    if row is not None:
        is_shared = is_shared and row.is_shared()
    rowptr = self._rowptr
    if rowptr is not None:
        is_shared = is_shared and rowptr.is_shared()
    is_shared = is_shared and self._col.is_shared()
    value = self._value
    if value is not None:
        is_shared = is_shared and value.is_shared()
    rowcount = self._rowcount
    if rowcount is not None:
        is_shared = is_shared and rowcount.is_shared()
    colptr = self._colptr
    if colptr is not None:
        is_shared = is_shared and colptr.is_shared()
    colcount = self._colcount
    if colcount is not None:
        is_shared = is_shared and colcount.is_shared()
    csr2csc = self._csr2csc
    if csr2csc is not None:
        is_shared = is_shared and csr2csc.is_shared()
    csc2csr = self._csc2csr
    if csc2csr is not None:
        is_shared = is_shared and csc2csr.is_shared()
    return is_shared


SparseStorage.share_memory_ = share_memory_
SparseStorage.is_shared = is_shared