test_degree_padding2.py 5.67 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
import pytest
import torch
from torch_sparse import SparseTensor
from torch_geometric.datasets import Planetoid
from torch_geometric.utils import degree

devices = [torch.device('cuda')]


@pytest.mark.parametrize('device', devices)
def test_padded_index_select(device):
rusty1s's avatar
rusty1s committed
12
13
14
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)

rusty1s's avatar
rusty1s committed
15
16
17
18
19
20
    row = torch.tensor([0, 0, 0, 0, 1, 1, 1, 2, 2, 3])
    col = torch.tensor([0, 1, 2, 3, 0, 2, 3, 1, 3, 2])
    idx = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    adj = SparseTensor(row=row, col=col).to(device)
    binptr = torch.tensor([0, 3, 5], device=device)

rusty1s's avatar
DONE  
rusty1s committed
21
22
23
24
    data = torch.ops.torch_sparse.padded_index(adj.storage.rowptr(),
                                               adj.storage.col(),
                                               adj.storage.rowcount(), binptr)
    node_perm, row_perm, col_perm, mask, size, length = data
rusty1s's avatar
rusty1s committed
25

rusty1s's avatar
DONE  
rusty1s committed
26
27
28
29
30
31
    print('node perm', node_perm)
    print('row perm', row_perm)
    print('col perm', col_perm)
    print('mask', mask)
    print('size', size)
    print('length', length)
rusty1s's avatar
rusty1s committed
32

rusty1s's avatar
DONE  
rusty1s committed
33
34
35
36
    # x = torch.tensor([[0], [1], [2], [3]], dtype=torch.float, device=device)
    # out = torch.ops.torch_sparse.padded_index_select(x, adj.storage.col(), idx,
    #                                                  torch.tensor(0.))
    # print(out)
rusty1s's avatar
rusty1s committed
37

rusty1s's avatar
rusty1s committed
38
39
40
41
42
43
44
    dataset = Planetoid('/tmp/Planetoid', name='PubMed')
    data = dataset[0]
    row, col = data.edge_index.to(device)

    adj = SparseTensor(row=row, col=col)
    rowcount = adj.storage.rowcount().to(device)
    rowptr = adj.storage.rowptr().to(device)
rusty1s's avatar
rusty1s committed
45
    binptr = torch.tensor([0, 4, 11, 30, 50, 80, 120, 140, 2000]).to(device)
rusty1s's avatar
rusty1s committed
46

rusty1s's avatar
DONE  
rusty1s committed
47
48
    # deg = degree(row, dtype=torch.long)
    # bins = torch.bincount(deg)
rusty1s's avatar
rusty1s committed
49
50
51
52
53
54
55
56
57
58
    # print(bins.size())
    # print(bins[:200])
    # for i in range(110):
    #     if i == 10:
    #         start.record()
    #     perms, lengths = torch.ops.torch_sparse.bin_assignment(
    #         rowcount, binptr)
    # end.record()
    # torch.cuda.synchronize()
    # print('bin assignment', start.elapsed_time(end))
rusty1s's avatar
DONE  
rusty1s committed
59
60
61
62
63
64
65
    # idx, mask, size, length, offset = torch.ops.torch_sparse.padded_index(
    #     rowptr, rowcount, binptr)
    # print(size)
    # print(length)
    # print(offset)
    # print(mask[:10])
    # print(idx[:10])
rusty1s's avatar
rusty1s committed
66

rusty1s's avatar
rusty1s committed
67
68
69
    for i in range(110):
        if i == 10:
            start.record()
rusty1s's avatar
DONE  
rusty1s committed
70
        torch.ops.torch_sparse.padded_index(rowptr, col, rowcount, binptr)
rusty1s's avatar
rusty1s committed
71
72
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
73
    print('padded index', start.elapsed_time(end))
rusty1s's avatar
DONE  
rusty1s committed
74
75
76
    return

    x = torch.randn(data.num_nodes, 512).to(device)
rusty1s's avatar
rusty1s committed
77

rusty1s's avatar
rusty1s committed
78
79
80
    for i in range(110):
        if i == 10:
            start.record()
rusty1s's avatar
rusty1s committed
81
82
        torch.ops.torch_sparse.padded_index_select(x, col, idx,
                                                   torch.tensor(0.))
rusty1s's avatar
rusty1s committed
83
84
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
85
    print('padded index select', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
86

rusty1s's avatar
rusty1s committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    for i in range(110):
        if i == 10:
            start.record()
        torch.repeat_interleave(rowcount, rowcount)
    end.record()
    torch.cuda.synchronize()
    print('repeat', start.elapsed_time(end))

    for i in range(110):
        if i == 10:
            start.record()
        rowcount.cumsum(0)
    end.record()
    torch.cuda.synchronize()
    print('cumsum', start.elapsed_time(end))

    rowcount2 = rowcount.unsqueeze(1).repeat(1, 5).contiguous()
    for i in range(110):
        if i == 10:
            start.record()
        rowcount2.cumsum(0)
    end.record()
    torch.cuda.synchronize()
    print('cumsum', start.elapsed_time(end))

    for i in range(110):
        if i == 10:
            start.record()
        rowcount.sort()
    end.record()
    torch.cuda.synchronize()
    print('sort', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
119
120
121
122
123
124
125

    for i in range(110):
        if i == 10:
            start.record()
        x.index_select(0, col)
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
126
127
    print('index_select', start.elapsed_time(end))
    return
rusty1s's avatar
rusty1s committed
128
129
130
131
132
133
134
135
136
137

    for i in range(110):
        if i == 10:
            start.record()
        for perm, length in zip(perms, lengths):
            torch.ops.torch_sparse.padded_index_select(x, rowptr, col,
                                                       perm, length,
                                                       torch.tensor(0.))
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
138
    print('padded_index_select', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
139
140
141
142
143
144
145

    for perm, length in zip(perms, lengths):
        out, mask = torch.ops.torch_sparse.padded_index_select(
            x, rowptr, col, perm, length, torch.tensor(0.))
        print(out.size(), mask.size(), out.numel(), (out != 0).sum().item())

    lengths = bin_strategy[:, 1].view(-1).tolist()
rusty1s's avatar
rusty1s committed
146
147
148
149
150
151
152
153

    for dim in [32, 64, 128, 256, 512, 1024]:
        print(f'--- Dim: {dim} ---')
        x = torch.randn(adj.size(0), dim).to(device)

        for i in range(110):
            if i == 10:
                start.record()
rusty1s's avatar
rusty1s committed
154
155
156
157
            perms = torch.ops.torch_sparse.bin_assignment(
                rowcount, bin_strategy)
            print(perms)
            return
rusty1s's avatar
rusty1s committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            for perm, length in zip(perms, lengths):
                out1, _ = torch.ops.torch_sparse.padded_index_select(
                    x, rowptr, col, perm, length, torch.tensor(0.))
        end.record()
        torch.cuda.synchronize()
        print(start.elapsed_time(end))

        for i in range(110):
            if i == 10:
                start.record()
            out2 = x.index_select(0, row)
        end.record()
        torch.cuda.synchronize()
        print(start.elapsed_time(end))

        for i in range(110):
            if i == 10:
                start.record()
            out3 = x.index_select(0, col)
        end.record()
        torch.cuda.synchronize()
        print(start.elapsed_time(end))