test_degree_padding2.py 4.76 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
import pytest
import torch
from torch_sparse import SparseTensor
from torch_geometric.datasets import Planetoid
from torch_geometric.utils import degree

devices = [torch.device('cuda')]


@pytest.mark.parametrize('device', devices)
def test_padded_index_select(device):
rusty1s's avatar
rusty1s committed
12
13
14
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)

rusty1s's avatar
rusty1s committed
15
16
17
18
19
20
21
    dataset = Planetoid('/tmp/Planetoid', name='PubMed')
    data = dataset[0]
    row, col = data.edge_index.to(device)

    adj = SparseTensor(row=row, col=col)
    rowcount = adj.storage.rowcount().to(device)
    rowptr = adj.storage.rowptr().to(device)
rusty1s's avatar
rusty1s committed
22
23
24

    bin_strategy = torch.tensor([[1, 4], [4, 11], [11, 30]]).to(device)
    binptr = torch.tensor([0, 4, 11, 30, 50, 80, 120, 140, 2000]).to(device)
rusty1s's avatar
rusty1s committed
25
26
27

    deg = degree(row, dtype=torch.long)
    bins = torch.bincount(deg)
rusty1s's avatar
rusty1s committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    # print(bins.size())
    # print(bins[:200])
    # for i in range(110):
    #     if i == 10:
    #         start.record()
    #     perms, lengths = torch.ops.torch_sparse.bin_assignment(
    #         rowcount, binptr)
    # end.record()
    # torch.cuda.synchronize()
    # print('bin assignment', start.elapsed_time(end))
    idx, mask, size, length, offset = torch.ops.torch_sparse.padded_index(
        rowptr, rowcount, binptr)
    print(size)
    print(length)
    print(offset)
    print(mask[:10])
    print(idx[:10])

    x = torch.randn(data.num_nodes, 128).to(device)

rusty1s's avatar
rusty1s committed
48
49
50
    for i in range(110):
        if i == 10:
            start.record()
rusty1s's avatar
rusty1s committed
51
        torch.ops.torch_sparse.padded_index(rowptr, rowcount, binptr)
rusty1s's avatar
rusty1s committed
52
53
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
54
    print('padded index', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
55

rusty1s's avatar
rusty1s committed
56
57
58
    for i in range(110):
        if i == 10:
            start.record()
rusty1s's avatar
rusty1s committed
59
60
        torch.ops.torch_sparse.padded_index_select(x, col, idx,
                                                   torch.tensor(0.))
rusty1s's avatar
rusty1s committed
61
62
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
63
    print('padded index select', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
64

rusty1s's avatar
rusty1s committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    for i in range(110):
        if i == 10:
            start.record()
        torch.repeat_interleave(rowcount, rowcount)
    end.record()
    torch.cuda.synchronize()
    print('repeat', start.elapsed_time(end))

    for i in range(110):
        if i == 10:
            start.record()
        rowcount.cumsum(0)
    end.record()
    torch.cuda.synchronize()
    print('cumsum', start.elapsed_time(end))

    rowcount2 = rowcount.unsqueeze(1).repeat(1, 5).contiguous()
    for i in range(110):
        if i == 10:
            start.record()
        rowcount2.cumsum(0)
    end.record()
    torch.cuda.synchronize()
    print('cumsum', start.elapsed_time(end))

    for i in range(110):
        if i == 10:
            start.record()
        rowcount.sort()
    end.record()
    torch.cuda.synchronize()
    print('sort', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
97
98
99
100
101
102
103

    for i in range(110):
        if i == 10:
            start.record()
        x.index_select(0, col)
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
104
105
    print('index_select', start.elapsed_time(end))
    return
rusty1s's avatar
rusty1s committed
106
107
108
109
110
111
112
113
114
115

    for i in range(110):
        if i == 10:
            start.record()
        for perm, length in zip(perms, lengths):
            torch.ops.torch_sparse.padded_index_select(x, rowptr, col,
                                                       perm, length,
                                                       torch.tensor(0.))
    end.record()
    torch.cuda.synchronize()
rusty1s's avatar
rusty1s committed
116
    print('padded_index_select', start.elapsed_time(end))
rusty1s's avatar
rusty1s committed
117
118
119
120
121
122
123

    for perm, length in zip(perms, lengths):
        out, mask = torch.ops.torch_sparse.padded_index_select(
            x, rowptr, col, perm, length, torch.tensor(0.))
        print(out.size(), mask.size(), out.numel(), (out != 0).sum().item())

    lengths = bin_strategy[:, 1].view(-1).tolist()
rusty1s's avatar
rusty1s committed
124
125
126
127
128
129
130
131

    for dim in [32, 64, 128, 256, 512, 1024]:
        print(f'--- Dim: {dim} ---')
        x = torch.randn(adj.size(0), dim).to(device)

        for i in range(110):
            if i == 10:
                start.record()
rusty1s's avatar
rusty1s committed
132
133
134
135
            perms = torch.ops.torch_sparse.bin_assignment(
                rowcount, bin_strategy)
            print(perms)
            return
rusty1s's avatar
rusty1s committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
            for perm, length in zip(perms, lengths):
                out1, _ = torch.ops.torch_sparse.padded_index_select(
                    x, rowptr, col, perm, length, torch.tensor(0.))
        end.record()
        torch.cuda.synchronize()
        print(start.elapsed_time(end))

        for i in range(110):
            if i == 10:
                start.record()
            out2 = x.index_select(0, row)
        end.record()
        torch.cuda.synchronize()
        print(start.elapsed_time(end))

        for i in range(110):
            if i == 10:
                start.record()
            out3 = x.index_select(0, col)
        end.record()
        torch.cuda.synchronize()
        print(start.elapsed_time(end))