"docs/vscode:/vscode.git/clone" did not exist on "568dc42d4fc3a70466897242cd371d4c3034f48c"
sample_cpu.cpp 4.32 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include "sample_cpu.h"

#include "utils.h"

#ifdef _WIN32
#include <process.h>
#endif

// Returns `rowptr`, `col`, `n_id`, `e_id`
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample_adj_cpu(torch::Tensor rowptr, torch::Tensor col, torch::Tensor idx,
               int64_t num_neighbors, bool replace) {
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  CHECK_CPU(idx);
  CHECK_INPUT(idx.dim() == 1);

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

limm's avatar
limm committed
22
  auto out_rowptr = torch::empty({idx.numel() + 1}, rowptr.options());
quyuanhao123's avatar
quyuanhao123 committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  auto out_rowptr_data = out_rowptr.data_ptr<int64_t>();
  out_rowptr_data[0] = 0;

  std::vector<std::vector<std::tuple<int64_t, int64_t>>> cols; // col, e_id
  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;

  int64_t i;
  for (int64_t n = 0; n < idx.numel(); n++) {
    i = idx_data[n];
    cols.push_back(std::vector<std::tuple<int64_t, int64_t>>());
    n_id_map[i] = n;
    n_ids.push_back(i);
  }

  int64_t n, c, e, row_start, row_end, row_count;

  if (num_neighbors < 0) { // No sampling ======================================

    for (int64_t i = 0; i < idx.numel(); i++) {
      n = idx_data[i];
      row_start = rowptr_data[n], row_end = rowptr_data[n + 1];
      row_count = row_end - row_start;

      for (int64_t j = 0; j < row_count; j++) {
        e = row_start + j;
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }
        cols[i].push_back(std::make_tuple(n_id_map[c], e));
      }
      out_rowptr_data[i + 1] = out_rowptr_data[i] + cols[i].size();
    }
  }

  else if (replace) { // Sample with replacement ===============================

    for (int64_t i = 0; i < idx.numel(); i++) {
      n = idx_data[i];
      row_start = rowptr_data[n], row_end = rowptr_data[n + 1];
      row_count = row_end - row_start;

      if (row_count > 0) {
        for (int64_t j = 0; j < num_neighbors; j++) {
limm's avatar
limm committed
70
          e = row_start + uniform_randint(row_count);
quyuanhao123's avatar
quyuanhao123 committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
          c = col_data[e];

          if (n_id_map.count(c) == 0) {
            n_id_map[c] = n_ids.size();
            n_ids.push_back(c);
          }
          cols[i].push_back(std::make_tuple(n_id_map[c], e));
        }
      }
      out_rowptr_data[i + 1] = out_rowptr_data[i] + cols[i].size();
    }

  } else { // Sample without replacement via Robert Floyd algorithm ============

    for (int64_t i = 0; i < idx.numel(); i++) {
      n = idx_data[i];
      row_start = rowptr_data[n], row_end = rowptr_data[n + 1];
      row_count = row_end - row_start;

      std::unordered_set<int64_t> perm;
      if (row_count <= num_neighbors) {
        for (int64_t j = 0; j < row_count; j++)
          perm.insert(j);
      } else { // See: https://www.nowherenearithaca.com/2013/05/
               //      robert-floyds-tiny-and-beautiful.html
        for (int64_t j = row_count - num_neighbors; j < row_count; j++) {
limm's avatar
limm committed
97
          if (!perm.insert(uniform_randint(j)).second)
quyuanhao123's avatar
quyuanhao123 committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
            perm.insert(j);
        }
      }

      for (const int64_t &p : perm) {
        e = row_start + p;
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }
        cols[i].push_back(std::make_tuple(n_id_map[c], e));
      }
      out_rowptr_data[i + 1] = out_rowptr_data[i] + cols[i].size();
    }
  }

  int64_t N = n_ids.size();
  auto out_n_id = torch::from_blob(n_ids.data(), {N}, col.options()).clone();

  int64_t E = out_rowptr_data[idx.numel()];
limm's avatar
limm committed
120
  auto out_col = torch::empty({E}, col.options());
quyuanhao123's avatar
quyuanhao123 committed
121
  auto out_col_data = out_col.data_ptr<int64_t>();
limm's avatar
limm committed
122
  auto out_e_id = torch::empty({E}, col.options());
quyuanhao123's avatar
quyuanhao123 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  auto out_e_id_data = out_e_id.data_ptr<int64_t>();

  i = 0;
  for (std::vector<std::tuple<int64_t, int64_t>> &col_vec : cols) {
    std::sort(col_vec.begin(), col_vec.end(),
              [](const std::tuple<int64_t, int64_t> &a,
                 const std::tuple<int64_t, int64_t> &b) -> bool {
                return std::get<0>(a) < std::get<0>(b);
              });
    for (const std::tuple<int64_t, int64_t> &value : col_vec) {
      out_col_data[i] = std::get<0>(value);
      out_e_id_data[i] = std::get<1>(value);
      i += 1;
    }
  }

  return std::make_tuple(out_rowptr, out_col, out_n_id, out_e_id);
}