sample_cpu.cpp 4.37 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include "sample_cpu.h"

#include "utils.h"

#ifdef _WIN32
#include <process.h>
#endif

// Returns `rowptr`, `col`, `n_id`, `e_id`
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample_adj_cpu(torch::Tensor rowptr, torch::Tensor col, torch::Tensor idx,
               int64_t num_neighbors, bool replace) {
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  CHECK_CPU(idx);
  CHECK_INPUT(idx.dim() == 1);

  srand(time(NULL) + 1000 * getpid()); // Initialize random seed.

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

  auto out_rowptr = torch::empty(idx.numel() + 1, rowptr.options());
  auto out_rowptr_data = out_rowptr.data_ptr<int64_t>();
  out_rowptr_data[0] = 0;

  std::vector<std::vector<std::tuple<int64_t, int64_t>>> cols; // col, e_id
  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;

  int64_t i;
  for (int64_t n = 0; n < idx.numel(); n++) {
    i = idx_data[n];
    cols.push_back(std::vector<std::tuple<int64_t, int64_t>>());
    n_id_map[i] = n;
    n_ids.push_back(i);
  }

  int64_t n, c, e, row_start, row_end, row_count;

  if (num_neighbors < 0) { // No sampling ======================================

    for (int64_t i = 0; i < idx.numel(); i++) {
      n = idx_data[i];
      row_start = rowptr_data[n], row_end = rowptr_data[n + 1];
      row_count = row_end - row_start;

      for (int64_t j = 0; j < row_count; j++) {
        e = row_start + j;
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }
        cols[i].push_back(std::make_tuple(n_id_map[c], e));
      }
      out_rowptr_data[i + 1] = out_rowptr_data[i] + cols[i].size();
    }
  }

  else if (replace) { // Sample with replacement ===============================

    for (int64_t i = 0; i < idx.numel(); i++) {
      n = idx_data[i];
      row_start = rowptr_data[n], row_end = rowptr_data[n + 1];
      row_count = row_end - row_start;

      if (row_count > 0) {
        for (int64_t j = 0; j < num_neighbors; j++) {
          e = row_start + rand() % row_count;
          c = col_data[e];

          if (n_id_map.count(c) == 0) {
            n_id_map[c] = n_ids.size();
            n_ids.push_back(c);
          }
          cols[i].push_back(std::make_tuple(n_id_map[c], e));
        }
      }
      out_rowptr_data[i + 1] = out_rowptr_data[i] + cols[i].size();
    }

  } else { // Sample without replacement via Robert Floyd algorithm ============

    for (int64_t i = 0; i < idx.numel(); i++) {
      n = idx_data[i];
      row_start = rowptr_data[n], row_end = rowptr_data[n + 1];
      row_count = row_end - row_start;

      std::unordered_set<int64_t> perm;
      if (row_count <= num_neighbors) {
        for (int64_t j = 0; j < row_count; j++)
          perm.insert(j);
      } else { // See: https://www.nowherenearithaca.com/2013/05/
               //      robert-floyds-tiny-and-beautiful.html
        for (int64_t j = row_count - num_neighbors; j < row_count; j++) {
          if (!perm.insert(rand() % j).second)
            perm.insert(j);
        }
      }

      for (const int64_t &p : perm) {
        e = row_start + p;
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }
        cols[i].push_back(std::make_tuple(n_id_map[c], e));
      }
      out_rowptr_data[i + 1] = out_rowptr_data[i] + cols[i].size();
    }
  }

  int64_t N = n_ids.size();
  auto out_n_id = torch::from_blob(n_ids.data(), {N}, col.options()).clone();

  int64_t E = out_rowptr_data[idx.numel()];
  auto out_col = torch::empty(E, col.options());
  auto out_col_data = out_col.data_ptr<int64_t>();
  auto out_e_id = torch::empty(E, col.options());
  auto out_e_id_data = out_e_id.data_ptr<int64_t>();

  i = 0;
  for (std::vector<std::tuple<int64_t, int64_t>> &col_vec : cols) {
    std::sort(col_vec.begin(), col_vec.end(),
              [](const std::tuple<int64_t, int64_t> &a,
                 const std::tuple<int64_t, int64_t> &b) -> bool {
                return std::get<0>(a) < std::get<0>(b);
              });
    for (const std::tuple<int64_t, int64_t> &value : col_vec) {
      out_col_data[i] = std::get<0>(value);
      out_e_id_data[i] = std::get<1>(value);
      i += 1;
    }
  }

  return std::make_tuple(out_rowptr, out_col, out_n_id, out_e_id);
}