tensor.py 19.6 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
import torch_sparse.reduce
rusty1s's avatar
rusty1s committed
14
from torch_sparse.add import add, add_nnz
rusty1s's avatar
rusty1s committed
15
16
17
18


class SparseTensor(object):
    def __init__(self, index, value=None, sparse_size=None, is_sorted=False):
rusty1s's avatar
rusty1s committed
19
20
        self.storage = SparseStorage(index, value, sparse_size,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
21
22
23
24

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
25
        self.storage = storage
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

        index = index.t().contiguous()
        value = mat[index[0], index[1]]
rusty1s's avatar
rusty1s committed
37
38
39
40
        return SparseTensor(index, value, mat.size()[:2], is_sorted=True)

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
41
42
        return SparseTensor(mat._indices(), mat._values(),
                            mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

        mat = mat.tocsr()
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        index = torch.stack([row, col], dim=0)
        value = torch.from_numpy(mat.data)
        size = mat.shape

rusty1s's avatar
rusty1s committed
59
60
        storage = SparseStorage(index, value, size, rowptr=rowptr,
                                colptr=colptr, is_sorted=True)
rusty1s's avatar
rusty1s committed
61
62

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
63
64

    def __copy__(self):
rusty1s's avatar
rusty1s committed
65
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
66
67

    def clone(self):
rusty1s's avatar
rusty1s committed
68
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
69
70
71
72
73
74
75
76
77

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
78
        return self.storage.index, self.storage.value
rusty1s's avatar
rusty1s committed
79
80

    def csr(self):
rusty1s's avatar
rusty1s committed
81
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
82
83

    def csc(self):
rusty1s's avatar
fixes  
rusty1s committed
84
        perm = self.storage.csr2csc  # Compute `csr2csc` first.
rusty1s's avatar
rusty1s committed
85
86
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
87
88
89
90

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
91
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
92
93

    def set_value_(self, value, layout=None):
rusty1s's avatar
rusty1s committed
94
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
95
96
97
        return self

    def set_value(self, value, layout=None):
rusty1s's avatar
rusty1s committed
98
        return self.from_storage(self.storage.set_value(value, layout))
rusty1s's avatar
rusty1s committed
99
100

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
101
        return self.storage.sparse_size(dim)
rusty1s's avatar
rusty1s committed
102
103

    def sparse_resize_(self, *sizes):
rusty1s's avatar
rusty1s committed
104
        self.storage.sparse_resize_(*sizes)
rusty1s's avatar
rusty1s committed
105
106
107
        return self

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
108
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
109

rusty1s's avatar
rusty1s committed
110
111
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
112
113

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
114
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
115
116

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
117
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
118
119
120
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
121
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
122
123
124
125
126
127
        return self

    # Utility functions #######################################################

    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
128
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
129
130
131
132
133
134
135
136
137
138
        return size if dim is None else size[dim]

    def dim(self):
        return len(self.size())

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
139
        return self.storage.index.size(1)
rusty1s's avatar
rusty1s committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

        rowptr, col, val1 = self.csr()
        colptr, row, val2 = self.csc()
rusty1s's avatar
rusty1s committed
165
166
167
        index_sym = (rowptr == colptr).all() and (col == row).all()
        value_sym = (val1 == val2).all().item() if self.has_value() else True
        return index_sym.item() and value_sym
rusty1s's avatar
rusty1s committed
168
169

    def detach_(self):
rusty1s's avatar
rusty1s committed
170
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
171
172
173
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
174
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
175
176

    def pin_memory(self):
rusty1s's avatar
rusty1s committed
177
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
178
179

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
180
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
181
182

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
183
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
184
185
186
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
187
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
188
189
190

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
191
        return self.storage.index.device
rusty1s's avatar
rusty1s committed
192
193

    def cpu(self):
rusty1s's avatar
rusty1s committed
194
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
195
196

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
197
198
        storage = self.storage.apply(
            lambda x: x.cuda(device, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
199
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
200
201
202

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
203
        return self.storage.index.is_cuda
rusty1s's avatar
rusty1s committed
204
205
206

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
207
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
208
209

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
210
        value = self.storage.value
rusty1s's avatar
rusty1s committed
211
212
213
214
215
216
217
218
219
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
220
221
        storage = self.storage.apply_value(
            lambda x: x.type(dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
222
223

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
224
225
226
227
228
229
230

    def to(self, *args, **kwargs):
        storage = None

        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
231
            storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
232
233
234
235
                device, non_blocking=getattr(kwargs, 'non_blocking', False)))

        for arg in args[:]:
            if isinstance(arg, str) or isinstance(arg, torch.device):
rusty1s's avatar
rusty1s committed
236
                storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
237
238
239
240
                    arg, non_blocking=getattr(kwargs, 'non_blocking', False)))
                args.remove(arg)

        if storage is not None:
rusty1s's avatar
rusty1s committed
241
            self = self.from_storage(storage)
rusty1s's avatar
rusty1s committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

        if len(args) > 0 or len(kwargs) > 0:
            self = self.type(*args, **kwargs)

        return self

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
        (row, col), value = self.coo()
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
        index, value = self.coo()
        return torch.sparse_coo_tensor(
rusty1s's avatar
rusty1s committed
290
291
292
            index, value if self.has_value() else torch.ones(
                self.nnz(), dtype=dtype, device=self.device), self.size(),
            device=self.device, requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
293
294

    def to_scipy(self, dtype=None, layout=None):
rusty1s's avatar
rusty1s committed
295
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
296
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
297

rusty1s's avatar
rusty1s committed
298
299
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
300
301

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
302
303
304
305
            (row, col), value = self.coo()
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
306
307
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
308
309
310
311
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
312
313
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
314
315
316
317
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
318
319
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
320
321
322
323
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
324
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
            raise SyntaxError()

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
        index, value = self.coo()
        infos = [f'index={indent(index.__repr__(), i)[len(i):]}']

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
385

rusty1s's avatar
rusty1s committed
386
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
387
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
388
389
390
391
392
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
393
394
395
396
SparseTensor.sum = torch_sparse.reduce.sum
SparseTensor.mean = torch_sparse.reduce.mean
SparseTensor.min = torch_sparse.reduce.min
SparseTensor.max = torch_sparse.reduce.max
rusty1s's avatar
rusty1s committed
397
398
SparseTensor.add = add
SparseTensor.add_nnz = add_nnz
rusty1s's avatar
rusty1s committed
399

rusty1s's avatar
typo  
rusty1s committed
400
401
402
# def remove_diag(self):
#     raise NotImplementedError

rusty1s's avatar
rusty1s committed
403
404
405
#     def set_diag(self, value):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#     def __reduce(self, dim, reduce, only_nnz):
#         raise NotImplementedError

#     def sum(self, dim):
#         return self.__reduce(dim, reduce='add', only_nnz=True)

#     def prod(self, dim):
#         return self.__reduce(dim, reduce='mul', only_nnz=True)

#     def min(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def max(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def mean(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='mean', only_nnz=only_nnz)

#     def matmul(self, mat, reduce='add'):
#         assert self.numel() == self.nnz()  # Disallow multi-dimensional value
#         if torch.is_tensor(mat):
#             raise NotImplementedError
#         elif isinstance(mat, self.__class__):
#             assert reduce == 'add'
rusty1s's avatar
rusty1s committed
430
#           assert mat.numel() == mat.nnz()  # Disallow multi-dimensional value
rusty1s's avatar
rusty1s committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#             raise NotImplementedError
#         raise ValueError('Argument needs to be of type `torch.tensor` or '
#                          'type `torch_sparse.SparseTensor`.')

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
459
460
461
if __name__ == '__main__':
    from torch_geometric.datasets import Reddit, Planetoid  # noqa
    import time  # noqa
rusty1s's avatar
rusty1s committed
462

rusty1s's avatar
rusty1s committed
463
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
464
    # device = 'cpu'
rusty1s's avatar
rusty1s committed
465

rusty1s's avatar
rusty1s committed
466
467
    dataset = Reddit('/tmp/Reddit')
    # dataset = Planetoid('/tmp/PubMed', 'PubMed')
rusty1s's avatar
rusty1s committed
468
    data = dataset[0].to(device)
rusty1s's avatar
rusty1s committed
469

rusty1s's avatar
rusty1s committed
470
471
472
    value = torch.randn((data.num_edges, 8), device=device)
    mat = SparseTensor(data.edge_index, value)
    print(mat)
rusty1s's avatar
rusty1s committed
473

474
    t = time.perf_counter()
rusty1s's avatar
rusty1s committed
475
476
    torch.cuda.synchronize()
    out = mat.sum(dim=1)
477
478
    torch.cuda.synchronize()
    print(time.perf_counter() - t)
rusty1s's avatar
rusty1s committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    print(out.size())
    # perm = torch.arange(data.num_nodes)
    # perm = torch.randperm(data.num_nodes)

    # mat1 = SparseTensor(torch.tensor([[0, 1], [0, 1]]))
    # mat2 = SparseTensor(torch.tensor([[0, 0, 1], [0, 1, 0]]))
    # add(mat1, mat2)
    # # print(mat2)
    # raise NotImplementedError

    # for _ in range(10):
    #     x = torch.randn(1000, 1000, device=device).sum()

    # torch.cuda.synchronize()
    # t = time.perf_counter()
    # for _ in range(100):
    #     mat[perm]
    # torch.cuda.synchronize()
    # print(time.perf_counter() - t)
498
499
500
501
502
503
504
505
506
507

    # index = torch.tensor([
    #     [0, 1, 1, 2, 2],
    #     [1, 2, 2, 2, 3],
    # ])
    # value = torch.tensor([1, 2, 3, 4, 5])

    # mat = SparseTensor(index, value)
    # print(mat)
    # print(mat.coalesce())
rusty1s's avatar
rusty1s committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

    # index = torch.tensor([0, 1, 2])
    # mask = torch.zeros(data.num_nodes, dtype=torch.bool)
    # mask[:3] = True

    # print(mat[1].size())
    # print(mat[1, 1].size())
    # print(mat[..., -1].size())
    # print(mat[:10, ..., -1].size())
    # print(mat[:, -1].size())
    # print(mat[1, :, -1].size())
    # print(mat[1:4, 1:4].size())
    # print(mat[index].size())
    # print(mat[index, index].size())
    # print(mat[mask, index].size())
rusty1s's avatar
rusty1s committed
523
524
525
526
527
528
529
530
531
532
533
    # mat[::-1]
    # mat[::2]

    # mat1 = SparseTensor.from_dense(mat1.to_dense())

    # print(mat1)
    # mat = SparseTensor.from_torch_sparse_coo_tensor(
    #     mat1.to_torch_sparse_coo_tensor())

    # mat = SparseTensor.from_scipy(mat.to_scipy(layout='csc'))
    # print(mat)
rusty1s's avatar
rusty1s committed
534

rusty1s's avatar
rusty1s committed
535
536
    # index = torch.tensor([0, 2])
    # mat2 = mat1.index_select(2, index)
rusty1s's avatar
rusty1s committed
537

rusty1s's avatar
rusty1s committed
538
539
540
    # index = torch.randperm(data.num_nodes)[:data.num_nodes - 500]
    # mask = torch.zeros(data.num_nodes, dtype=torch.bool)
    # mask[index] = True
rusty1s's avatar
rusty1s committed
541

rusty1s's avatar
rusty1s committed
542
543
544
545
546
547
548
549
550
    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.index_select(0, index)
    # print(time.perf_counter() - t)

    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.masked_select(0, mask)
    # print(time.perf_counter() - t)
rusty1s's avatar
rusty1s committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

    # mat2 = mat1.narrow(1, start=0, length=3)
    # print(mat2)

    # index = torch.randperm(data.num_nodes)
    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.index_select(0, index)
    # print(time.perf_counter() - t)

    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.index_select(1, index)
    # print(time.perf_counter() - t)
    # raise NotImplementedError

    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.t().index_select(0, index).t()
    # print(time.perf_counter() - t)

rusty1s's avatar
rusty1s committed
572
    # print(mat1)
rusty1s's avatar
rusty1s committed
573
574
575
576
577
578
579
580
581
582
583
584
585
    # mat1.index_select((0, 1), torch.tensor([0, 1, 2, 3, 4]))

    # print(mat3)
    # print(mat3.storage.rowcount)

    # print(mat1)

    # (row, col), value = mat1.coo()
    # mask = row < 3
    # t = time.perf_counter()
    # for _ in range(10000):
    #     mat2 = mat1.narrow(1, start=10, length=2690)
    # print(time.perf_counter() - t)
rusty1s's avatar
rusty1s committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

    # # print(mat1.to_dense().size())
    # print(mat1.to_torch_sparse_coo_tensor().to_dense().size())
    # print(mat1.to_scipy(layout='coo').todense().shape)
    # print(mat1.to_scipy(layout='csr').todense().shape)
    # print(mat1.to_scipy(layout='csc').todense().shape)

    # print(mat1.is_quadratic())
    # print(mat1.is_symmetric())

    # print(mat1.cached_keys())
    # mat1 = mat1.t()
    # print(mat1.cached_keys())
    # mat1 = mat1.t()
    # print(mat1.cached_keys())
    # print('-------- NARROW ----------')

rusty1s's avatar
rusty1s committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    # t = time.perf_counter()
    # for _ in range(100):
    #     out = mat1.narrow(dim=0, start=10, length=10)
    #     # out.storage.colptr
    # print(time.perf_counter() - t)
    # print(out)
    # print(out.cached_keys())

    # t = time.perf_counter()
    # for _ in range(100):
    #     out = mat1.narrow(dim=1, start=10, length=2000)
    #     # out.storage.colptr
    # print(time.perf_counter() - t)
    # print(out)
    # print(out.cached_keys())
rusty1s's avatar
rusty1s committed
618
619

    # mat1 = mat1.narrow(0, start=10, length=10)
rusty1s's avatar
rusty1s committed
620
    # mat1.storage._value = torch.randn(mat1.nnz(), 20)
rusty1s's avatar
rusty1s committed
621
622
623
    # print(mat1.coo()[1].size())
    # mat1 = mat1.narrow(2, start=10, length=10)
    # print(mat1.coo()[1].size())
rusty1s's avatar
rusty1s committed
624
625
#     mat1 = mat1.t()

rusty1s's avatar
rusty1s committed
626
#   mat2 = torch.sparse_coo_tensor(data.edge_index, torch.ones(data.num_edges),
rusty1s's avatar
rusty1s committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
#                                    device=device)
#     mat2 = mat2.coalesce()
#     mat2 = mat2.t().coalesce()

#     index1, value1 = mat1.coo()
#     index2, value2 = mat2._indices(), mat2._values()
#     assert torch.allclose(index1, index2)

#     out1 = mat1.to_dense()
#     out2 = mat2.to_dense()
#     assert torch.allclose(out1, out2)

#     out = 2 + mat1
#     print(out)

#     # mat1[1]
#     # mat1[1, 1]
#     # mat1[..., -1]
#     # mat1[:, -1]
#     # mat1[1:4, 1:4]
#     # mat1[torch.tensor([0, 1, 2])]