test_matmul.py 2.11 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
import torch_scatter
rusty1s's avatar
rusty1s committed
6
7
8
from torch_sparse.matmul import matmul
from torch_sparse.tensor import SparseTensor

rusty1s's avatar
rusty1s committed
9
from .utils import devices, grad_dtypes, reductions
rusty1s's avatar
rusty1s committed
10
11
12


@pytest.mark.parametrize('dtype,device,reduce',
rusty1s's avatar
rusty1s committed
13
                         product(grad_dtypes, devices, reductions))
rusty1s's avatar
rusty1s committed
14
def test_spmm(dtype, device, reduce):
rusty1s's avatar
rusty1s committed
15
    src = torch.randn((10, 8), dtype=dtype, device=device)
rusty1s's avatar
rusty1s committed
16
17
    src[2:4, :] = 0  # Remove multiple rows.
    src[:, 2:4] = 0  # Remove multiple columns.
rusty1s's avatar
rusty1s committed
18
    src = SparseTensor.from_dense(src).requires_grad_()
rusty1s's avatar
rusty1s committed
19
    row, col, value = src.coo()
rusty1s's avatar
rusty1s committed
20

rusty1s's avatar
rusty1s committed
21
    other = torch.randn((2, 8, 2), dtype=dtype, device=device,
rusty1s's avatar
rusty1s committed
22
23
                        requires_grad=True)

rusty1s's avatar
rusty1s committed
24
    src_col = other.index_select(-2, col) * value.unsqueeze(-1)
rusty1s's avatar
matmul  
rusty1s committed
25
    expected = torch_scatter.scatter(src_col, row, dim=-2, reduce=reduce)
rusty1s's avatar
rusty1s committed
26
27
28
    if reduce == 'min':
        expected[expected > 1000] = 0
    if reduce == 'max':
rusty1s's avatar
rusty1s committed
29
        expected[expected < -1000] = 0
rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36

    grad_out = torch.randn_like(expected)

    expected.backward(grad_out)
    expected_grad_value = value.grad
    value.grad = None
    expected_grad_other = other.grad
rusty1s's avatar
rusty1s committed
37
38
    other.grad = None

rusty1s's avatar
rusty1s committed
39
40
    out = matmul(src, other, reduce)
    out.backward(grad_out)
rusty1s's avatar
rusty1s committed
41

rusty1s's avatar
rusty1s committed
42
    assert torch.allclose(expected, out, atol=1e-2)
rusty1s's avatar
rusty1s committed
43
44
    assert torch.allclose(expected_grad_value, value.grad, atol=1e-2)
    assert torch.allclose(expected_grad_other, other.grad, atol=1e-2)
rusty1s's avatar
rusty1s committed
45
46


rusty1s's avatar
rusty1s committed
47
48
49
50
@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_spspmm(dtype, device):
    src = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=dtype,
                       device=device)
rusty1s's avatar
rusty1s committed
51

rusty1s's avatar
rusty1s committed
52
53
54
55
56
57
58
59
    src = SparseTensor.from_dense(src)
    out = matmul(src, src)
    assert out.sizes() == [3, 3]
    assert out.has_value()
    rowptr, col, value = out.csr()
    assert rowptr.tolist() == [0, 1, 2, 3]
    assert col.tolist() == [0, 1, 2]
    assert value.tolist() == [1, 1, 1]
rusty1s's avatar
rusty1s committed
60

rusty1s's avatar
rusty1s committed
61
62
63
64
65
66
67
    src.set_value_(None)
    out = matmul(src, src)
    assert out.sizes() == [3, 3]
    assert not out.has_value()
    rowptr, col, value = out.csr()
    assert rowptr.tolist() == [0, 1, 2, 3]
    assert col.tolist() == [0, 1, 2]