test_matmul.py 1.83 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
from itertools import product

import pytest
import torch

from torch_sparse.matmul import matmul
from torch_sparse.tensor import SparseTensor
import torch_scatter

rusty1s's avatar
rusty1s committed
10
from .utils import reductions, devices, grad_dtypes
rusty1s's avatar
rusty1s committed
11
12
13


@pytest.mark.parametrize('dtype,device,reduce',
rusty1s's avatar
rusty1s committed
14
                         product(grad_dtypes, devices, reductions))
rusty1s's avatar
rusty1s committed
15
def test_spmm(dtype, device, reduce):
rusty1s's avatar
rusty1s committed
16
    src = torch.randn((10, 8), dtype=dtype, device=device)
rusty1s's avatar
rusty1s committed
17
18
    src[2:4, :] = 0  # Remove multiple rows.
    src[:, 2:4] = 0  # Remove multiple columns.
rusty1s's avatar
rusty1s committed
19
    src = SparseTensor.from_dense(src).requires_grad_()
rusty1s's avatar
rusty1s committed
20
    row, col, value = src.coo()
rusty1s's avatar
rusty1s committed
21

rusty1s's avatar
rusty1s committed
22
    other = torch.randn((2, 8, 2), dtype=dtype, device=device,
rusty1s's avatar
rusty1s committed
23
24
                        requires_grad=True)

rusty1s's avatar
rusty1s committed
25
    src_col = other.index_select(-2, col) * value.unsqueeze(-1)
rusty1s's avatar
matmul  
rusty1s committed
26
    expected = torch_scatter.scatter(src_col, row, dim=-2, reduce=reduce)
rusty1s's avatar
rusty1s committed
27
28
29
    if reduce == 'min':
        expected[expected > 1000] = 0
    if reduce == 'max':
rusty1s's avatar
rusty1s committed
30
        expected[expected < -1000] = 0
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37

    grad_out = torch.randn_like(expected)

    expected.backward(grad_out)
    expected_grad_value = value.grad
    value.grad = None
    expected_grad_other = other.grad
rusty1s's avatar
rusty1s committed
38
39
    other.grad = None

rusty1s's avatar
rusty1s committed
40
41
    out = matmul(src, other, reduce)
    out.backward(grad_out)
rusty1s's avatar
rusty1s committed
42

rusty1s's avatar
rusty1s committed
43
44
45
    assert torch.allclose(expected, out)
    assert torch.allclose(expected_grad_value, value.grad)
    assert torch.allclose(expected_grad_other, other.grad)
rusty1s's avatar
rusty1s committed
46
47


rusty1s's avatar
matmul  
rusty1s committed
48
49
50
51
# @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
# def test_spspmm(dtype, device):
#     src = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=dtype,
#                        device=device)
rusty1s's avatar
rusty1s committed
52

rusty1s's avatar
matmul  
rusty1s committed
53
54
55
56
#     src = SparseTensor.from_dense(src)
#     out = src @ src
#     assert out.size() == (3, 3)
#     assert out.has_value()
rusty1s's avatar
rusty1s committed
57

rusty1s's avatar
matmul  
rusty1s committed
58
59
60
61
#     src.set_value_(None)
#     out = src @ src
#     assert out.size() == (3, 3)
#     assert not out.has_value()