"official/projects/edgetpu/vision/train.py" did not exist on "4551e0fb4fa974c34e6d5d15a8ee6154b13efc8c"
mean.py 3.45 KB
Newer Older
Matthias Fey's avatar
Matthias Fey committed
1
2
from __future__ import division

rusty1s's avatar
rusty1s committed
3
4
5
6
7
from .scatter import scatter
from .utils import gen_filled_tensor, gen_output


def scatter_mean_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
8
9
10
11
12
13
14
15
16
17
18
19
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/mean.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Averages all values from the :attr:`input` tensor into :attr:`output` at
    the indices specified in the :attr:`index` tensor along an given axis
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
    :attr:`dim`. If multiple indices reference the same location, their
    **contributions average** (`cf.` :meth:`~torch_scatter.scatter_add_`).

    For one-dimensional tensors, the operation computes

    .. math::
rusty1s's avatar
typo  
rusty1s committed
26
        \mathrm{output}_i = \mathrm{output}_i + \frac{1}{N_i} \cdot
rusty1s's avatar
rusty1s committed
27
28
29
        \sum_j \mathrm{input}_j

    where sum is over :math:`j` such that :math:`\mathrm{index}_j = i` and
rusty1s's avatar
typo  
rusty1s committed
30
    :math:`N_i` indicates the number of indices referencing :math:`i`.
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    Args:
        output (Tensor): The destination tensor
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_mean_
        input =     torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = torch.zeros(2, 6)
        scatter_mean_(output, index, input, dim=1)
        print(output)

    .. testoutput::

        0.0000  0.0000  4.0000  3.0000  1.5000  0.0000
        1.0000  4.0000  2.0000  0.0000  0.0000  0.0000
       [torch.FloatTensor of size 2x6]
    """
rusty1s's avatar
typos  
rusty1s committed
59
60
61
62
    count = gen_filled_tensor(output, output.size(), fill_value=0)
    scatter('mean', dim, output, index, input, count)
    count[count == 0] = 1
    output /= count
rusty1s's avatar
rusty1s committed
63
64
65
    return output


rusty1s's avatar
rename  
rusty1s committed
66
def scatter_mean(index, input, dim=0, size=None, fill_value=0):
rusty1s's avatar
rusty1s committed
67
68
69
70
71
72
73
74
    r"""Averages all values from the :attr:`input` tensor at the indices
    specified in the :attr:`index` tensor along an given axis :attr:`dim`
    (`cf.` :meth:`~torch_scatter.scatter_mean_` and
    :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
rusty1s's avatar
typo  
rusty1s committed
75
        \mathrm{output}_i = \mathrm{fill\_value} + \frac{1}{N_i} \cdot
rusty1s's avatar
rusty1s committed
76
77
78
        \sum_j \mathrm{input}_j

    where sum is over :math:`j` such that :math:`\mathrm{index}_j = i` and
rusty1s's avatar
typo  
rusty1s committed
79
    :math:`N_i` indicates the number of indices referencing :math:`i`.
rusty1s's avatar
rusty1s committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    Args:
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index
        size (int, optional): Output size at dimension :attr:`dim`
        fill_value (int, optional): Initial filling of output tensor

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_mean
        input =     torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = scatter_mean(index, input, dim=1)
        print(output)

    .. testoutput::

        0.0000  0.0000  4.0000  3.0000  1.5000  0.0000
        1.0000  4.0000  2.0000  0.0000  0.0000  0.0000
       [torch.FloatTensor of size 2x6]
    """
rusty1s's avatar
rename  
rusty1s committed
108
    output = gen_output(index, input, dim, size, fill_value)
rusty1s's avatar
rusty1s committed
109
    return scatter_mean_(output, index, input, dim)