mean.py 3.42 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from .scatter import scatter
from .utils import gen_filled_tensor, gen_output


def scatter_mean_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
14
15
16
17
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/mean.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Averages all values from the :attr:`input` tensor into :attr:`output` at
    the indices specified in the :attr:`index` tensor along an given axis
rusty1s's avatar
rusty1s committed
18
19
20
21
22
23
    :attr:`dim`. If multiple indices reference the same location, their
    **contributions average** (`cf.` :meth:`~torch_scatter.scatter_add_`).

    For one-dimensional tensors, the operation computes

    .. math::
rusty1s's avatar
typo  
rusty1s committed
24
        \mathrm{output}_i = \mathrm{output}_i + \frac{1}{N_i} \cdot
rusty1s's avatar
rusty1s committed
25
26
27
        \sum_j \mathrm{input}_j

    where sum is over :math:`j` such that :math:`\mathrm{index}_j = i` and
rusty1s's avatar
typo  
rusty1s committed
28
    :math:`N_i` indicates the number of indices referencing :math:`i`.
rusty1s's avatar
rusty1s committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

    Args:
        output (Tensor): The destination tensor
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_mean_
        input =     torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = torch.zeros(2, 6)
        scatter_mean_(output, index, input, dim=1)
        print(output)

    .. testoutput::

        0.0000  0.0000  4.0000  3.0000  1.5000  0.0000
        1.0000  4.0000  2.0000  0.0000  0.0000  0.0000
       [torch.FloatTensor of size 2x6]
    """
rusty1s's avatar
typos  
rusty1s committed
57
58
59
60
    count = gen_filled_tensor(output, output.size(), fill_value=0)
    scatter('mean', dim, output, index, input, count)
    count[count == 0] = 1
    output /= count
rusty1s's avatar
rusty1s committed
61
62
63
    return output


rusty1s's avatar
rename  
rusty1s committed
64
def scatter_mean(index, input, dim=0, size=None, fill_value=0):
rusty1s's avatar
rusty1s committed
65
66
67
68
69
70
71
72
    r"""Averages all values from the :attr:`input` tensor at the indices
    specified in the :attr:`index` tensor along an given axis :attr:`dim`
    (`cf.` :meth:`~torch_scatter.scatter_mean_` and
    :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
rusty1s's avatar
typo  
rusty1s committed
73
        \mathrm{output}_i = \mathrm{fill\_value} + \frac{1}{N_i} \cdot
rusty1s's avatar
rusty1s committed
74
75
76
        \sum_j \mathrm{input}_j

    where sum is over :math:`j` such that :math:`\mathrm{index}_j = i` and
rusty1s's avatar
typo  
rusty1s committed
77
    :math:`N_i` indicates the number of indices referencing :math:`i`.
rusty1s's avatar
rusty1s committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    Args:
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index
        size (int, optional): Output size at dimension :attr:`dim`
        fill_value (int, optional): Initial filling of output tensor

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_mean
        input =     torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = scatter_mean(index, input, dim=1)
        print(output)

    .. testoutput::

        0.0000  0.0000  4.0000  3.0000  1.5000  0.0000
        1.0000  4.0000  2.0000  0.0000  0.0000  0.0000
       [torch.FloatTensor of size 2x6]
    """
rusty1s's avatar
rename  
rusty1s committed
106
    output = gen_output(index, input, dim, size, fill_value)
rusty1s's avatar
rusty1s committed
107
    return scatter_mean_(output, index, input, dim)