segment.py 10.7 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
import torch

rusty1s's avatar
rusty1s committed
3
from torch_scatter import segment_cpu, gather_cpu
rusty1s's avatar
rusty1s committed
4
from torch_scatter.helpers import min_value, max_value
rusty1s's avatar
rusty1s committed
5

rusty1s's avatar
rusty1s committed
6
if torch.cuda.is_available():
rusty1s's avatar
rusty1s committed
7
    from torch_scatter import segment_cuda, gather_cuda
rusty1s's avatar
rusty1s committed
8

rusty1s's avatar
rusty1s committed
9
10
11
seg = lambda is_cuda: segment_cuda if is_cuda else segment_cpu  # noqa
gat = lambda is_cuda: gather_cuda if is_cuda else gather_cpu  # noqa

rusty1s's avatar
rusty1s committed
12

rusty1s's avatar
rusty1s committed
13
14
15
class SegmentCOO(torch.autograd.Function):
    @staticmethod
    def forward(ctx, src, index, out, dim_size, reduce):
rusty1s's avatar
rusty1s committed
16
        assert reduce in ['add', 'mean', 'min', 'max']
rusty1s's avatar
rusty1s committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
        if out is not None:
            ctx.mark_dirty(out)
        ctx.reduce = reduce
        ctx.src_size = list(src.size())

        fill_value = 0
        if out is None:
            dim_size = index.max().item() + 1 if dim_size is None else dim_size
            size = list(src.size())
            size[index.dim() - 1] = dim_size

            if reduce == 'min':
                fill_value = max_value(src.dtype)
            elif reduce == 'max':
                fill_value = min_value(src.dtype)

            out = src.new_full(size, fill_value)

rusty1s's avatar
rusty1s committed
35
        out, arg_out = seg(src.is_cuda).segment_coo(src, index, out, reduce)
rusty1s's avatar
rusty1s committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

        if fill_value != 0:
            out.masked_fill_(out == fill_value, 0)

        ctx.save_for_backward(index, arg_out)

        if reduce == 'min' or reduce == 'max':
            return out, arg_out
        else:
            return out

    @staticmethod
    def backward(ctx, grad_out, *args):
        (index, arg_out), src_size = ctx.saved_tensors, ctx.src_size

        grad_src = None
        if ctx.needs_input_grad[0]:
rusty1s's avatar
rusty1s committed
53
            if ctx.reduce == 'add':
rusty1s's avatar
rusty1s committed
54
55
                grad_src = gat(grad_out).gather_coo(
                    grad_out, index, grad_out.new_empty(src_size))
rusty1s's avatar
rusty1s committed
56
            elif ctx.reduce == 'mean':
rusty1s's avatar
rusty1s committed
57
58
                grad_src = gat(grad_out).gather_coo(
                    grad_out, index, grad_out.new_empty(src_size))
rusty1s's avatar
rusty1s committed
59
                count = arg_out
rusty1s's avatar
rusty1s committed
60
                count = gat(grad_out.is_cuda).gather_coo(
rusty1s's avatar
rusty1s committed
61
                    count, index, count.new_empty(src_size[:index.dim()]))
rusty1s's avatar
rusty1s committed
62
63
                for _ in range(grad_out.dim() - index.dim()):
                    count = count.unsqueeze(-1)
rusty1s's avatar
rusty1s committed
64
65
66
67
68
69
70
                grad_src.div_(count)
            elif ctx.reduce == 'min' or ctx.reduce == 'max':
                src_size[index.dim() - 1] += 1
                grad_src = grad_out.new_zeros(src_size).scatter_(
                    index.dim() - 1, arg_out, grad_out)
                grad_src = grad_src.narrow(index.dim() - 1, 0,
                                           src_size[index.dim() - 1] - 1)
rusty1s's avatar
rusty1s committed
71

rusty1s's avatar
rusty1s committed
72
        return grad_src, None, None, None, None
rusty1s's avatar
rusty1s committed
73
74


rusty1s's avatar
rusty1s committed
75
76
77
class SegmentCSR(torch.autograd.Function):
    @staticmethod
    def forward(ctx, src, indptr, out, reduce):
rusty1s's avatar
rusty1s committed
78
        assert reduce in ['add', 'mean', 'min', 'max']
rusty1s's avatar
rusty1s committed
79
80
81
82

        if out is not None:
            ctx.mark_dirty(out)
        ctx.reduce = reduce
rusty1s's avatar
rusty1s committed
83
        ctx.src_size = list(src.size())
rusty1s's avatar
rusty1s committed
84

rusty1s's avatar
rusty1s committed
85
        out, arg_out = seg(src.is_cuda).segment_csr(src, indptr, out, reduce)
rusty1s's avatar
rusty1s committed
86
        ctx.save_for_backward(indptr, arg_out)
rusty1s's avatar
rusty1s committed
87
88
89
90
        return out if arg_out is None else (out, arg_out)

    @staticmethod
    def backward(ctx, grad_out, *args):
rusty1s's avatar
rusty1s committed
91
        (indptr, arg_out), src_size = ctx.saved_tensors, ctx.src_size
rusty1s's avatar
rusty1s committed
92
93
94

        grad_src = None
        if ctx.needs_input_grad[0]:
rusty1s's avatar
rusty1s committed
95
            if ctx.reduce == 'add':
rusty1s's avatar
rusty1s committed
96
97
                grad_src = gat(grad_out.is_cuda).gather_csr(
                    grad_out, indptr, grad_out.new_empty(src_size))
rusty1s's avatar
rusty1s committed
98
            elif ctx.reduce == 'mean':
rusty1s's avatar
rusty1s committed
99
100
                grad_src = gat(grad_out.is_cuda).gather_csr(
                    grad_out, indptr, grad_out.new_empty(src_size))
rusty1s's avatar
rusty1s committed
101
102
103
                indptr1 = indptr.narrow(-1, 0, indptr.size(-1) - 1)
                indptr2 = indptr.narrow(-1, 1, indptr.size(-1) - 1)
                count = (indptr2 - indptr1).to(grad_src.dtype)
rusty1s's avatar
rusty1s committed
104
                count = gat(grad_out.is_cuda).gather_csr(
rusty1s's avatar
rusty1s committed
105
                    count, indptr, count.new_empty(src_size[:indptr.dim()]))
rusty1s's avatar
rusty1s committed
106
107
                for _ in range(grad_out.dim() - indptr.dim()):
                    count = count.unsqueeze(-1)
rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
                grad_src.div_(count)
            elif ctx.reduce == 'min' or ctx.reduce == 'max':
                src_size[indptr.dim() - 1] += 1
                grad_src = grad_out.new_zeros(src_size).scatter_(
                    indptr.dim() - 1, arg_out, grad_out)
                grad_src = grad_src.narrow(indptr.dim() - 1, 0,
                                           src_size[indptr.dim() - 1] - 1)
rusty1s's avatar
rusty1s committed
115
116
117
118

        return grad_src, None, None, None


rusty1s's avatar
rusty1s committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def segment_coo(src, index, out=None, dim_size=None, reduce="add"):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/segment_coo.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Reduces all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along the last dimension of
    :attr:`index`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :obj:`index.dim() - 1` and by the
    corresponding value in :attr:`index` for dimension :obj:`index.dim() - 1`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional and
    :math:`m`-dimensional tensors with
    size :math:`(x_0, ..., x_{m-1}, x_m, x_{m+1}, ..., x_{n-1})` and
    :math:`(x_0, ..., x_{m-1}, x_m)`, respectively, then :attr:`out` must be an
    :math:`n`-dimensional tensor with size
    :math:`(x_0, ..., x_{m-1}, y, x_{m+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`index` must be between :math:`0` and
    :math:`y - 1` in ascending order.
    The :attr:`index` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.
    For one-dimensional tensors with :obj:`reduce="add"`, the operation
    computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

    In contrast to :meth:`scatter`, this method expects values in :attr:`index`
    **to be sorted** along dimension :obj:`index.dim() - 1`.
    Due to the use of sorted indices, :meth:`segment_coo` is usually faster
    than the more general :meth:`scatter` operation.

    For reductions :obj:`"min"` and :obj:`"max"`, this operation returns a
    second tensor representing the :obj:`argmin` and :obj:`argmax`,
    respectively.

    .. note::

        This operation is implemented via atomic operations on the GPU and is
        therefore **non-deterministic** since the order of parallel operations
        to the same value is undetermined.
        For floating-point variables, this results in a source of variance in
        the result.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The sorted indices of elements to segment.
            The number of dimensions of :attr:`index` needs to be less than or
            equal to :attr:`src`.
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension
            :obj:`index.dim() - 1`.
            If :attr:`dim_size` is not given, a minimal sized output tensor
            according to :obj:`index.max() + 1` is returned.
            (default: :obj:`None`)
        reduce (string, optional): The reduce operation (:obj:`"add"`,
            :obj:`"mean"`, :obj:`"min"` or :obj:`"max"`).
            (default: :obj:`"add"`)

    :rtype: :class:`Tensor`, :class:`LongTensor` *(optional)*

    .. code-block:: python

        from torch_scatter import segment_coo

        src = torch.randn(10, 6, 64)
        index = torch.tensor([0, 0, 1, 1, 1, 2])
        index = index.view(1, -1)  # Broadcasting in the first and last dim.

        out = segment_coo(src, index, reduce="add")

        print(out.size())

    .. code-block::

        torch.Size([10, 3, 64])
    """
rusty1s's avatar
rusty1s committed
208
    return SegmentCOO.apply(src, index, out, dim_size, reduce)
rusty1s's avatar
rusty1s committed
209
210


rusty1s's avatar
rusty1s committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def segment_csr(src, indptr, out=None, reduce="add"):
    r"""
    Reduces all values from the :attr:`src` tensor into :attr:`out` within the
    ranges specified in the :attr:`indptr` tensor along the last dimension of
    :attr:`indptr`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :obj:`indptr.dim() - 1` and by the
    corresponding range index in :attr:`indptr` for dimension
    :obj:`indptr.dim() - 1`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`indptr` are :math:`n`-dimensional and
    :math:`m`-dimensional tensors with
    size :math:`(x_0, ..., x_{m-1}, x_m, x_{m+1}, ..., x_{n-1})` and
    :math:`(x_0, ..., x_{m-1}, y)`, respectively, then :attr:`out` must be an
    :math:`n`-dimensional tensor with size
    :math:`(x_0, ..., x_{m-1}, y - 1, x_{m+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`indptr` must be between :math:`0` and
    :math:`x_m` in ascending order.
    The :attr:`indptr` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.
    For one-dimensional tensors with :obj:`reduce="add"`, the operation
    computes

    .. math::
        \mathrm{out}_i =
        \sum_{j = \mathrm{indptr}[i]}^{\mathrm{indptr}[i+i]}~\mathrm{src}_j.

    Due to the use of index pointers, :meth:`segment_csr` is the fastest
    method to apply for grouped reductions.

    For reductions :obj:`"min"` and :obj:`"max"`, this operation returns a
    second tensor representing the :obj:`argmin` and :obj:`argmax`,
    respectively.

    .. note::

        In contrast to :meth:`scatter()` and :meth:`segment_coo`, this
        operation is **fully-deterministic**.

    Args:
        src (Tensor): The source tensor.
        indptr (LongTensor): The index pointers between elements to segment.
            The number of dimensions of :attr:`index` needs to be less than or
            equal to :attr:`src`.
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        reduce (string, optional): The reduce operation (:obj:`"add"`,
            :obj:`"mean"`, :obj:`"min"` or :obj:`"max"`).
            (default: :obj:`"add"`)

    :rtype: :class:`Tensor`, :class:`LongTensor` *(optional)*

    .. code-block:: python

        from torch_scatter import segment_csr

        src = torch.randn(10, 6, 64)
        indptr = torch.tensor([0, 2, 5, 6])
        indptr = indptr.view(1, -1)  # Broadcasting in the first and last dim.

        out = segment_csr(src, indptr, reduce="add")

        print(out.size())

    .. code-block::

        torch.Size([10, 3, 64])
    """
rusty1s's avatar
rusty1s committed
279
    return SegmentCSR.apply(src, indptr, out, reduce)