segment.py 4.53 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
import torch

rusty1s's avatar
rusty1s committed
3
from torch_scatter.helpers import min_value, max_value
rusty1s's avatar
rusty1s committed
4

rusty1s's avatar
rusty1s committed
5
if torch.cuda.is_available():
rusty1s's avatar
rusty1s committed
6
    from torch_scatter import segment_cuda, gather_cuda
rusty1s's avatar
rusty1s committed
7
8


rusty1s's avatar
rusty1s committed
9
10
11
class SegmentCOO(torch.autograd.Function):
    @staticmethod
    def forward(ctx, src, index, out, dim_size, reduce):
rusty1s's avatar
rusty1s committed
12
        assert reduce in ['add', 'mean', 'min', 'max']
rusty1s's avatar
rusty1s committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
        if out is not None:
            ctx.mark_dirty(out)
        ctx.reduce = reduce
        ctx.src_size = list(src.size())

        fill_value = 0
        if out is None:
            dim_size = index.max().item() + 1 if dim_size is None else dim_size
            size = list(src.size())
            size[index.dim() - 1] = dim_size

            if reduce == 'min':
                fill_value = max_value(src.dtype)
            elif reduce == 'max':
                fill_value = min_value(src.dtype)

            out = src.new_full(size, fill_value)

        out, arg_out = segment_cuda.segment_coo(src, index, out, reduce)

        if fill_value != 0:
            out.masked_fill_(out == fill_value, 0)

        ctx.save_for_backward(index, arg_out)

        if reduce == 'min' or reduce == 'max':
            return out, arg_out
        else:
            return out

    @staticmethod
    def backward(ctx, grad_out, *args):
        (index, arg_out), src_size = ctx.saved_tensors, ctx.src_size

        grad_src = None
        if ctx.needs_input_grad[0]:
rusty1s's avatar
rusty1s committed
49
            if ctx.reduce == 'add':
rusty1s's avatar
rusty1s committed
50
51
52
53
54
55
56
57
                grad_src = gather_cuda.gather_coo(grad_out, index,
                                                  grad_out.new_empty(src_size))
            elif ctx.reduce == 'mean':
                grad_src = gather_cuda.gather_coo(grad_out, index,
                                                  grad_out.new_empty(src_size))
                count = arg_out
                count = gather_cuda.gather_coo(
                    count, index, count.new_empty(src_size[:index.dim()]))
rusty1s's avatar
rusty1s committed
58
59
                for _ in range(grad_out.dim() - index.dim()):
                    count = count.unsqueeze(-1)
rusty1s's avatar
rusty1s committed
60
61
62
63
64
65
66
                grad_src.div_(count)
            elif ctx.reduce == 'min' or ctx.reduce == 'max':
                src_size[index.dim() - 1] += 1
                grad_src = grad_out.new_zeros(src_size).scatter_(
                    index.dim() - 1, arg_out, grad_out)
                grad_src = grad_src.narrow(index.dim() - 1, 0,
                                           src_size[index.dim() - 1] - 1)
rusty1s's avatar
rusty1s committed
67
        return grad_src, None, None, None, None
rusty1s's avatar
rusty1s committed
68
69


rusty1s's avatar
rusty1s committed
70
71
72
class SegmentCSR(torch.autograd.Function):
    @staticmethod
    def forward(ctx, src, indptr, out, reduce):
rusty1s's avatar
rusty1s committed
73
        assert reduce in ['add', 'mean', 'min', 'max']
rusty1s's avatar
rusty1s committed
74
75
76
77

        if out is not None:
            ctx.mark_dirty(out)
        ctx.reduce = reduce
rusty1s's avatar
rusty1s committed
78
        ctx.src_size = list(src.size())
rusty1s's avatar
rusty1s committed
79
80

        out, arg_out = segment_cuda.segment_csr(src, indptr, out, reduce)
rusty1s's avatar
rusty1s committed
81
        ctx.save_for_backward(indptr, arg_out)
rusty1s's avatar
rusty1s committed
82
83
84
85
        return out if arg_out is None else (out, arg_out)

    @staticmethod
    def backward(ctx, grad_out, *args):
rusty1s's avatar
rusty1s committed
86
        (indptr, arg_out), src_size = ctx.saved_tensors, ctx.src_size
rusty1s's avatar
rusty1s committed
87
88
89

        grad_src = None
        if ctx.needs_input_grad[0]:
rusty1s's avatar
rusty1s committed
90
            if ctx.reduce == 'add':
rusty1s's avatar
rusty1s committed
91
92
93
94
95
96
97
98
99
100
                grad_src = gather_cuda.gather_csr(grad_out, indptr,
                                                  grad_out.new_empty(src_size))
            elif ctx.reduce == 'mean':
                grad_src = gather_cuda.gather_csr(grad_out, indptr,
                                                  grad_out.new_empty(src_size))
                indptr1 = indptr.narrow(-1, 0, indptr.size(-1) - 1)
                indptr2 = indptr.narrow(-1, 1, indptr.size(-1) - 1)
                count = (indptr2 - indptr1).to(grad_src.dtype)
                count = gather_cuda.gather_csr(
                    count, indptr, count.new_empty(src_size[:indptr.dim()]))
rusty1s's avatar
rusty1s committed
101
102
                for _ in range(grad_out.dim() - indptr.dim()):
                    count = count.unsqueeze(-1)
rusty1s's avatar
rusty1s committed
103
104
105
106
107
108
109
                grad_src.div_(count)
            elif ctx.reduce == 'min' or ctx.reduce == 'max':
                src_size[indptr.dim() - 1] += 1
                grad_src = grad_out.new_zeros(src_size).scatter_(
                    indptr.dim() - 1, arg_out, grad_out)
                grad_src = grad_src.narrow(indptr.dim() - 1, 0,
                                           src_size[indptr.dim() - 1] - 1)
rusty1s's avatar
rusty1s committed
110
111
112
113

        return grad_src, None, None, None


rusty1s's avatar
rusty1s committed
114
def segment_coo(src, index, out=None, dim_size=None, reduce='add'):
rusty1s's avatar
rusty1s committed
115
    return SegmentCOO.apply(src, index, out, dim_size, reduce)
rusty1s's avatar
rusty1s committed
116
117
118


def segment_csr(src, indptr, out=None, reduce='add'):
rusty1s's avatar
rusty1s committed
119
    return SegmentCSR.apply(src, indptr, out, reduce)