div.py 3.54 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from .scatter import Scatter, scatter
rusty1s's avatar
rusty1s committed
2
3
4
from .utils import gen_output


rusty1s's avatar
rusty1s committed
5
class ScatterDiv(Scatter):  # pragma: no cover
rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
14
    def __init__(self, dim):
        super(ScatterDiv, self).__init__('div', dim)

    def save_for_backward_step(self, *data):
        output, index, input = data
        self.save_for_backward(output, index, input)

    def backward_step(self, *data):
        grad, output, index, input = data
rusty1s's avatar
rusty1s committed
15
        return (output.data / grad).gather(self.dim, index.data) * input.data
rusty1s's avatar
rusty1s committed
16
17


rusty1s's avatar
rusty1s committed
18
def scatter_div_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
19
20
21
22
23
24
25
26
27
28
29
30
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/div.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Divides all values from the :attr:`input` tensor into :attr:`output` at
    the indices specified in the :attr:`index` tensor along an given axis
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38
39
    :attr:`dim`. If multiple indices reference the same location, their
    **contributions divide** (`cf.` :meth:`~torch_scatter.scatter_add_`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{output}_i = \mathrm{output}_i \cdot \prod_j
        \frac{1}{\mathrm{input}_j}

rusty1s's avatar
rusty1s committed
40
    where prod is over :math:`j` such that :math:`\mathrm{index}_j = i`.
rusty1s's avatar
rusty1s committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    Args:
        output (Tensor): The destination tensor
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_div_
        input =     torch.Tensor([[2, 1, 2, 4, 3], [1, 2, 2, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = torch.ones(2, 6)
        scatter_div_(output, index, input, dim=1)
        print(output)

    .. testoutput::

        1.0000  1.0000  0.2500  0.3333  0.2500  1.0000
        0.5000  0.2500  0.1667  1.0000  1.0000  1.0000
       [torch.FloatTensor of size 2x6]
    """
rusty1s's avatar
rusty1s committed
69
    return scatter(ScatterDiv, 'div', dim, output, index, input)
rusty1s's avatar
rusty1s committed
70
71


rusty1s's avatar
rename  
rusty1s committed
72
def scatter_div(index, input, dim=0, size=None, fill_value=1):
rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    r"""Divides all values from the :attr:`input` tensor at the indices
    specified in the :attr:`index` tensor along an given axis :attr:`dim`
    (`cf.` :meth:`~torch_scatter.scatter_div_` and
    :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{output}_i = \mathrm{fill\_value} \cdot \prod_j
        \frac{1}{\mathrm{input}_j}

    where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`.

    Args:
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index
        size (int, optional): Output size at dimension :attr:`dim`
        fill_value (int, optional): Initial filling of output tensor

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_div
        input =     torch.Tensor([[2, 1, 2, 4, 3], [1, 2, 2, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = scatter_div(index, input, dim=1)
        print(output)

    .. testoutput::

        1.0000  1.0000  0.2500  0.3333  0.2500  1.0000
        0.5000  0.2500  0.1667  1.0000  1.0000  1.0000
       [torch.FloatTensor of size 2x6]
    """
rusty1s's avatar
rename  
rusty1s committed
113
    output = gen_output(index, input, dim, size, fill_value)
rusty1s's avatar
rusty1s committed
114
    return scatter_div_(output, index, input, dim)