Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-scatter
Commits
54f2a7d5
"examples/svm_c_ex.cpp" did not exist on "5589665bab04376f164e755550db7da98096eafd"
Commit
54f2a7d5
authored
Dec 22, 2017
by
rusty1s
Browse files
more doc, bugfix
parent
1cd8aa6e
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
168 additions
and
14 deletions
+168
-14
torch_scatter/functions/add.py
torch_scatter/functions/add.py
+4
-4
torch_scatter/functions/div.py
torch_scatter/functions/div.py
+81
-3
torch_scatter/functions/mul.py
torch_scatter/functions/mul.py
+78
-2
torch_scatter/functions/sub.py
torch_scatter/functions/sub.py
+5
-5
No files found.
torch_scatter/functions/add.py
View file @
54f2a7d5
...
@@ -2,7 +2,7 @@ from .utils import gen_output
...
@@ -2,7 +2,7 @@ from .utils import gen_output
def
scatter_add_
(
output
,
index
,
input
,
dim
=
0
):
def
scatter_add_
(
output
,
index
,
input
,
dim
=
0
):
"""Sums all values from the :attr:`input` tensor into :attr:`output` at the
r
"""Sums all values from the :attr:`input` tensor into :attr:`output` at the
indices specified in the :attr:`index` tensor along an given axis
indices specified in the :attr:`index` tensor along an given axis
:attr:`dim`. For each value in :attr:`input`, its output index is specified
:attr:`dim`. For each value in :attr:`input`, its output index is specified
by its index in :attr:`input` for dimensions outside of :attr:`dim` and by
by its index in :attr:`input` for dimensions outside of :attr:`dim` and by
...
@@ -37,7 +37,7 @@ def scatter_add_(output, index, input, dim=0):
...
@@ -37,7 +37,7 @@ def scatter_add_(output, index, input, dim=0):
.. testcode::
.. testcode::
from torch_scatter import scatter_add_
from torch_scatter import scatter_add_
input = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
input =
torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = torch.zeros(2, 6)
output = torch.zeros(2, 6)
scatter_add_(output, index, input, dim=1)
scatter_add_(output, index, input, dim=1)
...
@@ -53,7 +53,7 @@ def scatter_add_(output, index, input, dim=0):
...
@@ -53,7 +53,7 @@ def scatter_add_(output, index, input, dim=0):
def
scatter_add
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
0
):
def
scatter_add
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
0
):
"""Sums all values from the :attr:`input` tensor at the indices specified
r
"""Sums all values from the :attr:`input` tensor at the indices specified
in the :attr:`index` tensor along an given axis :attr:`dim` (`cf.`
in the :attr:`index` tensor along an given axis :attr:`dim` (`cf.`
:meth:`~torch_scatter.scatter_add_`).
:meth:`~torch_scatter.scatter_add_`).
...
@@ -85,7 +85,7 @@ def scatter_add(index, input, dim=0, size=None, fill_value=0):
...
@@ -85,7 +85,7 @@ def scatter_add(index, input, dim=0, size=None, fill_value=0):
.. testcode::
.. testcode::
from torch_scatter import scatter_add
from torch_scatter import scatter_add
input = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
input =
torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = scatter_add(index, input, dim=1)
output = scatter_add(index, input, dim=1)
print(output)
print(output)
...
...
torch_scatter/functions/div.py
View file @
54f2a7d5
...
@@ -3,11 +3,89 @@ from .utils import gen_output
...
@@ -3,11 +3,89 @@ from .utils import gen_output
def
scatter_div_
(
output
,
index
,
input
,
dim
=
0
):
def
scatter_div_
(
output
,
index
,
input
,
dim
=
0
):
"""If multiple indices reference the same location, their
r
"""Divides all values from the :attr:`input` tensor into :attr:`output`
**contributions divide**."""
at the indices specified in the :attr:`index` tensor along an given axis
:attr:`dim`. If multiple indices reference the same location, their
**contributions divide** (`cf.` :meth:`~torch_scatter.scatter_add_`).
For one-dimensional tensors, the operation computes
.. math::
\mathrm{output}_i = \mathrm{output}_i \cdot \prod_j
\frac{1}{\mathrm{input}_j}
where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`.
Args:
output (Tensor): The destination tensor
index (LongTensor): The indices of elements to scatter
input (Tensor): The source tensor
dim (int, optional): The axis along which to index
:rtype: :class:`Tensor`
.. testsetup::
import torch
.. testcode::
from torch_scatter import scatter_div_
input = torch.Tensor([[2, 1, 2, 4, 3], [1, 2, 2, 3, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = torch.ones(2, 6)
scatter_div_(output, index, input, dim=1)
print(output)
.. testoutput::
1.0000 1.0000 0.2500 0.3333 0.2500 1.0000
0.5000 0.2500 0.1667 1.0000 1.0000 1.0000
[torch.FloatTensor of size 2x6]
"""
return
scatter
(
'div'
,
dim
,
output
,
index
,
input
)
return
scatter
(
'div'
,
dim
,
output
,
index
,
input
)
def
scatter_div
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
1
):
def
scatter_div
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
1
):
r
"""Divides all values from the :attr:`input` tensor at the indices
specified in the :attr:`index` tensor along an given axis :attr:`dim`
(`cf.` :meth:`~torch_scatter.scatter_div_` and
:meth:`~torch_scatter.scatter_add`).
For one-dimensional tensors, the operation computes
.. math::
\mathrm{output}_i = \mathrm{fill\_value} \cdot \prod_j
\frac{1}{\mathrm{input}_j}
where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`.
Args:
index (LongTensor): The indices of elements to scatter
input (Tensor): The source tensor
dim (int, optional): The axis along which to index
size (int, optional): Output size at dimension :attr:`dim`
fill_value (int, optional): Initial filling of output tensor
:rtype: :class:`Tensor`
.. testsetup::
import torch
.. testcode::
from torch_scatter import scatter_div
input = torch.Tensor([[2, 1, 2, 4, 3], [1, 2, 2, 3, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = scatter_div(index, input, dim=1)
print(output)
.. testoutput::
1.0000 1.0000 0.2500 0.3333 0.2500 1.0000
0.5000 0.2500 0.1667 1.0000 1.0000 1.0000
[torch.FloatTensor of size 2x6]
"""
output
=
gen_output
(
index
,
input
,
dim
,
size
,
fill_value
)
output
=
gen_output
(
index
,
input
,
dim
,
size
,
fill_value
)
scatter_div_
(
output
,
index
,
input
,
dim
)
return
scatter_div_
(
output
,
index
,
input
,
dim
)
torch_scatter/functions/mul.py
View file @
54f2a7d5
...
@@ -3,11 +3,87 @@ from .utils import gen_output
...
@@ -3,11 +3,87 @@ from .utils import gen_output
def
scatter_mul_
(
output
,
index
,
input
,
dim
=
0
):
def
scatter_mul_
(
output
,
index
,
input
,
dim
=
0
):
"""If multiple indices reference the same location, their
r
"""Multiplies all values from the :attr:`input` tensor into :attr:`output`
**contributions multiply**."""
at the indices specified in the :attr:`index` tensor along an given axis
:attr:`dim`. If multiple indices reference the same location, their
**contributions multiply** (`cf.` :meth:`~torch_scatter.scatter_add_`).
For one-dimensional tensors, the operation computes
.. math::
\mathrm{output}_i = \mathrm{output}_i \cdot \prod_j \mathrm{input}_j
where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`.
Args:
output (Tensor): The destination tensor
index (LongTensor): The indices of elements to scatter
input (Tensor): The source tensor
dim (int, optional): The axis along which to index
:rtype: :class:`Tensor`
.. testsetup::
import torch
.. testcode::
from torch_scatter import scatter_mul_
input = torch.Tensor([[2, 0, 3, 4, 3], [2, 3, 4, 2, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = torch.ones(2, 6)
scatter_mul_(output, index, input, dim=1)
print(output)
.. testoutput::
1 1 4 3 6 0
6 4 8 1 1 1
[torch.FloatTensor of size 2x6]
"""
return
scatter
(
'mul'
,
dim
,
output
,
index
,
input
)
return
scatter
(
'mul'
,
dim
,
output
,
index
,
input
)
def
scatter_mul
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
1
):
def
scatter_mul
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
1
):
r
"""Multiplies all values from the :attr:`input` tensor at the indices
specified in the :attr:`index` tensor along an given axis :attr:`dim`
(`cf.` :meth:`~torch_scatter.scatter_mul_` and
:meth:`~torch_scatter.scatter_add`).
For one-dimensional tensors, the operation computes
.. math::
\mathrm{output}_i = \mathrm{fill\_value} \cdot \prod_j \mathrm{input}_j
where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`.
Args:
index (LongTensor): The indices of elements to scatter
input (Tensor): The source tensor
dim (int, optional): The axis along which to index
size (int, optional): Output size at dimension :attr:`dim`
fill_value (int, optional): Initial filling of output tensor
:rtype: :class:`Tensor`
.. testsetup::
import torch
.. testcode::
from torch_scatter import scatter_mul
input = torch.Tensor([[2, 0, 3, 4, 3], [2, 3, 4, 2, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = scatter_mul(index, input, dim=1)
print(output)
.. testoutput::
1 1 4 3 6 0
6 4 8 1 1 1
[torch.FloatTensor of size 2x6]
"""
output
=
gen_output
(
index
,
input
,
dim
,
size
,
fill_value
)
output
=
gen_output
(
index
,
input
,
dim
,
size
,
fill_value
)
return
scatter_mul_
(
output
,
index
,
input
,
dim
)
return
scatter_mul_
(
output
,
index
,
input
,
dim
)
torch_scatter/functions/sub.py
View file @
54f2a7d5
...
@@ -2,7 +2,7 @@ from .utils import gen_output
...
@@ -2,7 +2,7 @@ from .utils import gen_output
def
scatter_sub_
(
output
,
index
,
input
,
dim
=
0
):
def
scatter_sub_
(
output
,
index
,
input
,
dim
=
0
):
"""Subtracts all values from the :attr:`input` tensor into :attr:`output`
r
"""Subtracts all values from the :attr:`input` tensor into :attr:`output`
at the indices specified in the :attr:`index` tensor along an given axis
at the indices specified in the :attr:`index` tensor along an given axis
:attr:`dim`. If multiple indices reference the same location, their
:attr:`dim`. If multiple indices reference the same location, their
**negated contributions add** (`cf.` :meth:`~torch_scatter.scatter_add_`).
**negated contributions add** (`cf.` :meth:`~torch_scatter.scatter_add_`).
...
@@ -29,7 +29,7 @@ def scatter_sub_(output, index, input, dim=0):
...
@@ -29,7 +29,7 @@ def scatter_sub_(output, index, input, dim=0):
.. testcode::
.. testcode::
from torch_scatter import scatter_sub_
from torch_scatter import scatter_sub_
input = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
input =
torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = torch.zeros(2, 6)
output = torch.zeros(2, 6)
scatter_sub_(output, index, input, dim=1)
scatter_sub_(output, index, input, dim=1)
...
@@ -38,14 +38,14 @@ def scatter_sub_(output, index, input, dim=0):
...
@@ -38,14 +38,14 @@ def scatter_sub_(output, index, input, dim=0):
.. testoutput::
.. testoutput::
0 0 -4 -3 -3 0
0 0 -4 -3 -3 0
-2 -4 -4
-
0 0 0
-2 -4 -4
0 0 0
[torch.FloatTensor of size 2x6]
[torch.FloatTensor of size 2x6]
"""
"""
return
output
.
scatter_add_
(
dim
,
index
,
-
input
)
return
output
.
scatter_add_
(
dim
,
index
,
-
input
)
def
scatter_sub
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
0
):
def
scatter_sub
(
index
,
input
,
dim
=
0
,
size
=
None
,
fill_value
=
0
):
"""Subtracts all values from the :attr:`input` tensor at the indices
r
"""Subtracts all values from the :attr:`input` tensor at the indices
specified in the :attr:`index` tensor along an given axis :attr:`dim`
specified in the :attr:`index` tensor along an given axis :attr:`dim`
(`cf.` :meth:`~torch_scatter.scatter_sub_` and
(`cf.` :meth:`~torch_scatter.scatter_sub_` and
:meth:`~torch_scatter.scatter_add`).
:meth:`~torch_scatter.scatter_add`).
...
@@ -73,7 +73,7 @@ def scatter_sub(index, input, dim=0, size=None, fill_value=0):
...
@@ -73,7 +73,7 @@ def scatter_sub(index, input, dim=0, size=None, fill_value=0):
.. testcode::
.. testcode::
from torch_scatter import scatter_sub
from torch_scatter import scatter_sub
input = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
input =
torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
output = scatter_sub(index, input, dim=1)
output = scatter_sub(index, input, dim=1)
print(output)
print(output)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment