segment_kernel.cu 17.3 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
rusty1s's avatar
rusty1s committed
3
4
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
rusty1s's avatar
rusty1s committed
5

rusty1s's avatar
rusty1s committed
6
#include "atomics.cuh"
rusty1s's avatar
rusty1s committed
7
#include "compat.cuh"
rusty1s's avatar
rusty1s committed
8
#include "indptr.cuh"
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
#define THREADS 256
rusty1s's avatar
rusty1s committed
11
#define BLOCKS(TB, N) (TB * N + THREADS - 1) / THREADS
rusty1s's avatar
rusty1s committed
12
13
#define FULL_MASK 0xffffffff

rusty1s's avatar
rusty1s committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
enum ReductionType { ADD, MEAN, MIN, MAX };
#define AT_DISPATCH_REDUCTION_TYPES(reduce, ...)                               \
  [&] {                                                                        \
    if (reduce == "add") {                                                     \
      const ReductionType REDUCE = ADD;                                        \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "mean") {                                             \
      const ReductionType REDUCE = MEAN;                                       \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "min") {                                              \
      const ReductionType REDUCE = MIN;                                        \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "max") {                                              \
      const ReductionType REDUCE = MAX;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
  }()

template <typename scalar_t, ReductionType REDUCE> struct Reducer {
rusty1s's avatar
rusty1s committed
33
  static inline __host__ __device__ scalar_t init() {
rusty1s's avatar
rusty1s committed
34
35
36
    if (REDUCE == MIN) {
      return std::numeric_limits<scalar_t>::max();
    } else if (REDUCE == MAX) {
rusty1s's avatar
rusty1s committed
37
      return std::numeric_limits<scalar_t>::lowest();
rusty1s's avatar
rusty1s committed
38
39
40
41
42
    } else {
      return (scalar_t)0;
    }
  }

rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
49
50
51
52
  static inline __host__ __device__ void update(scalar_t *val,
                                                scalar_t new_val) {
    if (REDUCE == ADD || REDUCE == MEAN) {
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
    }
  }

rusty1s's avatar
rusty1s committed
53
54
  static inline __host__ __device__ void update(scalar_t *val, scalar_t new_val,
                                                int64_t *arg, int64_t new_arg) {
rusty1s's avatar
rusty1s committed
55
56
57
58
    if (REDUCE == ADD || REDUCE == MEAN) {
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
rusty1s's avatar
rusty1s committed
59
60
61
62
63
      *val = new_val;
      *arg = new_arg;
    }
  }

rusty1s's avatar
rusty1s committed
64
65
66
  static inline __host__ __device__ void write(scalar_t *address, scalar_t val,
                                               int64_t *arg_address,
                                               int64_t arg, int count) {
rusty1s's avatar
rusty1s committed
67
68
69
70
71
72
73
74
75
76
77
78
79
    if (REDUCE == ADD) {
      *address = val;
    } else if (REDUCE == MEAN) {
      *address = val / (scalar_t)max(count, 1);
    } else if (REDUCE == MIN || REDUCE == MAX) {
      if (count > 0) {
        *address = val;
        *arg_address = arg;
      } else {
        *address = (scalar_t)0;
      }
    }
  }
rusty1s's avatar
atomics  
rusty1s committed
80

rusty1s's avatar
rusty1s committed
81
  static inline __device__ void atomic_write(scalar_t *address, scalar_t val) {
rusty1s's avatar
atomics  
rusty1s committed
82
83
84
85
86
87
88
89
90
91
    if (REDUCE == ADD) {
      atomAdd(address, val);
    } else if (REDUCE == MEAN) {
      atomAdd(address, val);
    } else if (REDUCE == MIN && val < *address) {
      atomMin(address, val);
    } else if (REDUCE == MAX && val > *address) {
      atomMax(address, val);
    }
  }
rusty1s's avatar
rusty1s committed
92
};
rusty1s's avatar
rusty1s committed
93

rusty1s's avatar
rusty1s committed
94
95
96
97
98
99
template <typename scalar_t, ReductionType REDUCE, int TB>
__global__ void
segment_csr_kernel(const scalar_t *src_data,
                   const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
                   scalar_t *out_data, int64_t *arg_out_data, size_t N,
                   size_t E) {
rusty1s's avatar
rusty1s committed
100

rusty1s's avatar
atomics  
rusty1s committed
101
102
  // Each warp processes exactly `32/TB` rows and aggregates all row values
  // via a parallel reduction.
rusty1s's avatar
rusty1s committed
103

rusty1s's avatar
rusty1s committed
104
  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
rusty1s's avatar
rusty1s committed
105
  int row_idx = thread_idx / TB;
rusty1s's avatar
rusty1s committed
106
107
  int lane_idx = thread_idx & (TB - 1);

rusty1s's avatar
rusty1s committed
108
  if (row_idx < N) {
rusty1s's avatar
rusty1s committed
109
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
rusty1s's avatar
rusty1s committed
110
    int row_start = __ldg(indptr_info.data + offset);
rusty1s's avatar
rusty1s committed
111
112
    int row_end = __ldg(indptr_info.data + offset +
                        indptr_info.strides[indptr_info.dims - 1]);
rusty1s's avatar
rusty1s committed
113

rusty1s's avatar
rusty1s committed
114
    scalar_t val = Reducer<scalar_t, REDUCE>::init();
rusty1s's avatar
atomics  
rusty1s committed
115
    int64_t arg, arg_tmp;
rusty1s's avatar
rusty1s committed
116

rusty1s's avatar
rusty1s committed
117
    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E;
rusty1s's avatar
rusty1s committed
118
    for (int src_idx = row_start + lane_idx; src_idx < row_end; src_idx += TB) {
rusty1s's avatar
rusty1s committed
119
120
      Reducer<scalar_t, REDUCE>::update(&val, src_data[offset + src_idx], &arg,
                                        src_idx);
rusty1s's avatar
rusty1s committed
121
122
123
    }

#pragma unroll
rusty1s's avatar
rusty1s committed
124
125
    for (int i = TB / 2; i > 0; i /= 2) {
      // Parallel reduction inside a single warp.
rusty1s's avatar
rusty1s committed
126
      if (REDUCE == MIN || REDUCE == MAX)
rusty1s's avatar
atomics  
rusty1s committed
127
        arg_tmp = __shfl_down_sync(FULL_MASK, arg, i);
rusty1s's avatar
rusty1s committed
128
129
      Reducer<scalar_t, REDUCE>::update(
          &val, __shfl_down_sync(FULL_MASK, val, i), &arg, arg_tmp);
rusty1s's avatar
rusty1s committed
130
    }
rusty1s's avatar
rusty1s committed
131
132

    if (lane_idx == 0) {
rusty1s's avatar
rusty1s committed
133
134
135
      Reducer<scalar_t, REDUCE>::write(out_data + row_idx, val,
                                       arg_out_data + row_idx, arg,
                                       row_end - row_start);
rusty1s's avatar
rusty1s committed
136
137
138
139
    }
  }
}

rusty1s's avatar
rusty1s committed
140
141
template <typename scalar_t, ReductionType REDUCE>
__global__ void segment_csr_broadcast_kernel(
rusty1s's avatar
rusty1s committed
142
143
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
rusty1s's avatar
rusty1s committed
144
    scalar_t *out_data, int64_t *arg_out_data, size_t N, size_t K, size_t E) {
rusty1s's avatar
rusty1s committed
145

rusty1s's avatar
rusty1s committed
146
147
148
  // Each thread processes exactly one row. It turned out that is more
  // efficient than using shared memory due to avoiding synchronization
  // barriers.
rusty1s's avatar
rusty1s committed
149

rusty1s's avatar
rusty1s committed
150
151
152
153
154
  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / K;
  int lane_idx = thread_idx % K;

  if (thread_idx < N * K) {
rusty1s's avatar
rusty1s committed
155
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
rusty1s's avatar
rusty1s committed
156
157
158
    int row_start = __ldg(indptr_info.data + offset);
    int row_end = __ldg(indptr_info.data + offset +
                        indptr_info.strides[indptr_info.dims - 1]);
rusty1s's avatar
rusty1s committed
159

rusty1s's avatar
rusty1s committed
160
161
    scalar_t val = Reducer<scalar_t, REDUCE>::init();
    int64_t arg;
rusty1s's avatar
rusty1s committed
162
163
164

    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E * K;
    for (int src_idx = row_start; src_idx < row_end; src_idx++) {
rusty1s's avatar
rusty1s committed
165
166
      Reducer<scalar_t, REDUCE>::update(
          &val, src_data[offset + K * src_idx + lane_idx], &arg, src_idx);
rusty1s's avatar
rusty1s committed
167
168
    }

rusty1s's avatar
rusty1s committed
169
170
171
    Reducer<scalar_t, REDUCE>::write(out_data + thread_idx, val,
                                     arg_out_data + thread_idx, arg,
                                     row_end - row_start);
rusty1s's avatar
rusty1s committed
172
173
174
  }
}

rusty1s's avatar
rusty1s committed
175
176
177
std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_csr_cuda(at::Tensor src, at::Tensor indptr,
                 at::optional<at::Tensor> out_opt, std::string reduce) {
178

rusty1s's avatar
rusty1s committed
179
  AT_ASSERTM(src.dim() >= indptr.dim(), "Input mismatch");
rusty1s's avatar
rusty1s committed
180
  for (int i = 0; i < indptr.dim() - 1; i++)
rusty1s's avatar
rusty1s committed
181
    AT_ASSERTM(src.size(i) == indptr.size(i), "Input mismatch");
rusty1s's avatar
rusty1s committed
182

rusty1s's avatar
rusty1s committed
183
  src = src.contiguous();
rusty1s's avatar
rusty1s committed
184
  auto reduce_dim = indptr.dim() - 1;
185
186
187

  at::Tensor out;
  if (out_opt.has_value()) {
rusty1s's avatar
rusty1s committed
188
    out = out_opt.value().contiguous();
189
190
    for (int i = 0; i < out.dim(); i++)
      if (i != reduce_dim)
rusty1s's avatar
rusty1s committed
191
        AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");
rusty1s's avatar
rusty1s committed
192
193
    AT_ASSERTM(out.size(reduce_dim) == indptr.size(reduce_dim) - 1,
               "Input mismatch");
194
195
196
197
198
  } else {
    auto sizes = src.sizes().vec();
    sizes[reduce_dim] = indptr.size(reduce_dim) - 1;
    out = at::empty(sizes, src.options());
  }
rusty1s's avatar
rusty1s committed
199

rusty1s's avatar
rusty1s committed
200
  at::optional<at::Tensor> arg_out = at::nullopt;
rusty1s's avatar
rusty1s committed
201
  int64_t *arg_out_data = nullptr;
rusty1s's avatar
rusty1s committed
202
203
  if (reduce == "min" || reduce == "max") {
    arg_out = at::full_like(out, src.size(reduce_dim), indptr.options());
rusty1s's avatar
rusty1s committed
204
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
rusty1s's avatar
rusty1s committed
205
206
  }

rusty1s's avatar
rusty1s committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  if (reduce == "any") {
    auto index = indptr.narrow(reduce_dim, 0, indptr.size(reduce_dim) - 1);
    auto index2 = indptr.narrow(reduce_dim, 1, indptr.size(reduce_dim) - 1);
    auto mask = (index2 - index) == 0;

    for (int i = reduce_dim + 1; i < src.dim(); i++) {
      index = index.unsqueeze(-1);
      mask = mask.unsqueeze(-1);
    }

    at::gather_out(out, src, reduce_dim, index.expand(out.sizes()));
    out.masked_fill_(mask.expand(out.sizes()), 0);

    return std::make_tuple(out, arg_out);
  }

rusty1s's avatar
rusty1s committed
223
224
  auto N = out.size(reduce_dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
rusty1s's avatar
rusty1s committed
225
  auto E = src.size(reduce_dim);
rusty1s's avatar
rusty1s committed
226

rusty1s's avatar
rusty1s committed
227
  auto indptr_info = at::cuda::detail::getTensorInfo<int64_t, int>(indptr);
rusty1s's avatar
rusty1s committed
228
  auto stream = at::cuda::getCurrentCUDAStream();
rusty1s's avatar
rusty1s committed
229
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr_kernel", [&] {
rusty1s's avatar
rusty1s committed
230
231
232
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

rusty1s's avatar
rusty1s committed
233
234
235
236
237
238
239
240
241
242
243
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (K == 1) {
        segment_csr_kernel<scalar_t, REDUCE, 1>
            <<<BLOCKS(32, N), THREADS, 0, stream>>>(
                src_data, indptr_info, out_data, arg_out_data, N, E);
      } else {
        segment_csr_broadcast_kernel<scalar_t, REDUCE>
            <<<BLOCKS(1, N * K), THREADS, 0, stream>>>(
                src_data, indptr_info, out_data, arg_out_data, N, K, E);
      }
    });
rusty1s's avatar
rusty1s committed
244
245
  });

rusty1s's avatar
rusty1s committed
246
  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
247
248
}

rusty1s's avatar
rusty1s committed
249
template <typename scalar_t, ReductionType REDUCE, bool HAS_VAL>
rusty1s's avatar
rusty1s committed
250
251
252
__global__ void
segment_coo_kernel(const scalar_t *src_data,
                   const at::cuda::detail::TensorInfo<int64_t, int> index_info,
rusty1s's avatar
rusty1s committed
253
                   scalar_t *out_data, size_t E, size_t N) {
rusty1s's avatar
rusty1s committed
254

rusty1s's avatar
rusty1s committed
255
256
257
258
259
260
  // Each thread processes exactly one entry. Within a warp, we perform a
  // parallel reduction across equal indices, and write the intermediate
  // result via atomics.

  int row_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int lane_idx = row_idx & (32 - 1);
rusty1s's avatar
rusty1s committed
261

rusty1s's avatar
rusty1s committed
262
263
264
265
  if (row_idx < E) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        row_idx, index_info);
    int idx = index_info.data[offset], next_idx;
rusty1s's avatar
rusty1s committed
266
    int out_idx = (row_idx / index_info.sizes[index_info.dims - 1]) * N + idx;
rusty1s's avatar
atomics  
rusty1s committed
267

rusty1s's avatar
rusty1s committed
268
    scalar_t val = HAS_VAL ? src_data[row_idx] : (scalar_t)1, tmp;
rusty1s's avatar
rusty1s committed
269
270

#pragma unroll
rusty1s's avatar
rusty1s committed
271
    for (int i = 1; i < 32; i *= 2) {
rusty1s's avatar
atomics  
rusty1s committed
272
      // Parallel reduction inside a single warp.
rusty1s's avatar
rusty1s committed
273
274
      tmp = __shfl_up_sync(FULL_MASK, val, i);
      next_idx = __shfl_up_sync(FULL_MASK, idx, i);
275
      assert(idx >= next_idx);
rusty1s's avatar
rusty1s committed
276
      if (lane_idx >= i && idx == next_idx)
rusty1s's avatar
rusty1s committed
277
        Reducer<scalar_t, REDUCE>::update(&val, tmp);
rusty1s's avatar
rusty1s committed
278
279
    }

rusty1s's avatar
rusty1s committed
280
281
    next_idx = __shfl_down_sync(FULL_MASK, idx, 1);
    if (lane_idx == 32 - 1 || idx != next_idx) {
rusty1s's avatar
rusty1s committed
282
      Reducer<scalar_t, REDUCE>::atomic_write(out_data + out_idx, val);
rusty1s's avatar
rusty1s committed
283
284
285
286
    }
  }
}

rusty1s's avatar
rusty1s committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
template <typename scalar_t>
__global__ void segment_coo_arg_kernel(
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> index_info,
    scalar_t *out_data, int64_t *arg_out_data, size_t E, size_t N) {

  int row_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (row_idx < E) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        row_idx, index_info);
    int idx = index_info.data[offset];
    int out_idx = (row_idx / index_info.sizes[index_info.dims - 1]) * N + idx;

    scalar_t val = __ldg(out_data + out_idx);
    if (src_data[row_idx] == val)
      arg_out_data[out_idx] = row_idx % index_info.sizes[index_info.dims - 1];
  }
}

rusty1s's avatar
rusty1s committed
307
308
template <typename scalar_t, ReductionType REDUCE, int TB>
__global__ void segment_coo_broadcast_kernel(
rusty1s's avatar
rusty1s committed
309
310
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> index_info,
rusty1s's avatar
rusty1s committed
311
    scalar_t *out_data, size_t E, size_t K, size_t N) {
rusty1s's avatar
rusty1s committed
312

rusty1s's avatar
rusty1s committed
313
314
315
  // Each thread processes a single column and `TB` index entries. Coalesced
  // read and write is performed in column-major order. The intermediate
  // results are written via atomics.
rusty1s's avatar
rusty1s committed
316

rusty1s's avatar
rusty1s committed
317
  int row_start = (blockIdx.x * blockDim.y + threadIdx.y) * TB;
rusty1s's avatar
rusty1s committed
318
319
320
321
322
  int col_idx = blockIdx.y * blockDim.x + threadIdx.x;

  if (row_start < E && col_idx < K) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        row_start, index_info);
rusty1s's avatar
rusty1s committed
323
    int out_idx = (row_start / index_info.sizes[index_info.dims - 1]) * N;
rusty1s's avatar
rusty1s committed
324
325
326
327
328
329
330
331
332
333
334

    int idx1 = __ldg(index_info.data + offset);
    scalar_t val = src_data[K * row_start + col_idx];

#pragma unroll
    for (int i = 1; i < TB; i++) {
      if (row_start + i >= E)
        break;

      int idx2 = __ldg(index_info.data + offset +
                       i * index_info.strides[index_info.dims - 1]);
335
      assert(idx1 <= idx2);
rusty1s's avatar
rusty1s committed
336
      if (idx1 == idx2) {
rusty1s's avatar
rusty1s committed
337
338
        Reducer<scalar_t, REDUCE>::update(
            &val, src_data[K * (row_start + i) + col_idx]);
rusty1s's avatar
rusty1s committed
339
      } else {
rusty1s's avatar
rusty1s committed
340
341
        Reducer<scalar_t, REDUCE>::atomic_write(
            out_data + (out_idx + idx1) * K + col_idx, val);
rusty1s's avatar
rusty1s committed
342
343
344
345
346
        val = src_data[K * (row_start + i) + col_idx];
      }
      idx1 = idx2;
    }

rusty1s's avatar
rusty1s committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    Reducer<scalar_t, REDUCE>::atomic_write(
        out_data + (out_idx + idx1) * K + col_idx, val);
  }
}

template <typename scalar_t>
__global__ void segment_coo_arg_broadcast_kernel(
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> index_info,
    scalar_t *out_data, int64_t *arg_out_data, size_t E, size_t K, size_t N) {

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / K;
  int col_idx = thread_idx % K;

  if (row_idx < E && col_idx < K) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        row_idx, index_info);
    int idx = __ldg(index_info.data + offset);
    int out_idx =
        ((row_idx / index_info.sizes[index_info.dims - 1]) * N + idx) * K +
        col_idx;

    scalar_t val = __ldg(out_data + out_idx);
    if (src_data[thread_idx] == val)
      arg_out_data[out_idx] = row_idx % index_info.sizes[index_info.dims - 1];
rusty1s's avatar
rusty1s committed
373
  }
rusty1s's avatar
rusty1s committed
374
375
}

rusty1s's avatar
rusty1s committed
376
377
378
std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_coo_cuda(at::Tensor src, at::Tensor index, at::Tensor out,
                 std::string reduce) {
rusty1s's avatar
rusty1s committed
379
  AT_ASSERTM(src.dim() >= index.dim(), "Input mismatch");
rusty1s's avatar
rusty1s committed
380
  for (int i = 0; i < index.dim(); i++)
rusty1s's avatar
rusty1s committed
381
    AT_ASSERTM(src.size(i) == index.size(i), "Input mismatch");
rusty1s's avatar
rusty1s committed
382
383

  src = src.contiguous();
rusty1s's avatar
rusty1s committed
384
  out = out.contiguous();
rusty1s's avatar
rusty1s committed
385
  auto reduce_dim = index.dim() - 1;
rusty1s's avatar
rusty1s committed
386

rusty1s's avatar
rusty1s committed
387
388
  for (int i = 0; i < out.dim(); i++)
    if (i != reduce_dim)
rusty1s's avatar
rusty1s committed
389
      AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");
rusty1s's avatar
rusty1s committed
390

rusty1s's avatar
rusty1s committed
391
  at::optional<at::Tensor> arg_out = at::nullopt;
rusty1s's avatar
rusty1s committed
392
  int64_t *arg_out_data = nullptr;
rusty1s's avatar
rusty1s committed
393
394
  if (reduce == "min" || reduce == "max") {
    arg_out = at::full_like(out, src.size(reduce_dim), index.options());
rusty1s's avatar
rusty1s committed
395
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
rusty1s's avatar
rusty1s committed
396
397
  }

rusty1s's avatar
rusty1s committed
398
399
400
401
402
403
404
405
  if (reduce == "any") {
    for (int i = reduce_dim + 1; i < src.dim(); i++) {
      index = index.unsqueeze(-1);
    }
    out.scatter_(reduce_dim, index.expand(src.sizes()), src);
    return std::make_tuple(out, arg_out);
  }

rusty1s's avatar
rusty1s committed
406
  auto E = index.numel();
rusty1s's avatar
rusty1s committed
407
  auto K = src.numel() / E;
rusty1s's avatar
rusty1s committed
408
  auto N = out.size(reduce_dim);
rusty1s's avatar
rusty1s committed
409
  auto avg_len = (float)src.size(reduce_dim) / (float)out.size(reduce_dim);
rusty1s's avatar
rusty1s committed
410

rusty1s's avatar
rusty1s committed
411
412
  auto index_info = at::cuda::detail::getTensorInfo<int64_t, int>(index);
  auto stream = at::cuda::getCurrentCUDAStream();
rusty1s's avatar
rusty1s committed
413
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_coo_kernel", [&] {
rusty1s's avatar
rusty1s committed
414
415
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();
rusty1s's avatar
rusty1s committed
416

rusty1s's avatar
rusty1s committed
417
418
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (K == 1) {
rusty1s's avatar
rusty1s committed
419
        segment_coo_kernel<scalar_t, REDUCE, true>
rusty1s's avatar
rusty1s committed
420
            <<<BLOCKS(1, E), THREADS, 0, stream>>>(src_data, index_info,
rusty1s's avatar
rusty1s committed
421
                                                   out_data, E, N);
rusty1s's avatar
rusty1s committed
422
423
424
      } else if (avg_len <= 8) {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 4>
            <<<dim3(((E + (8 * 4) - 1) / (8 * 4)), (K + 31) / 32), dim3(32, 8),
rusty1s's avatar
rusty1s committed
425
               0, stream>>>(src_data, index_info, out_data, E, K, N);
rusty1s's avatar
rusty1s committed
426
427
428
      } else if (avg_len <= 16) {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 8>
            <<<dim3(((E + (8 * 8) - 1) / (8 * 8)), (K + 31) / 32), dim3(32, 8),
rusty1s's avatar
rusty1s committed
429
               0, stream>>>(src_data, index_info, out_data, E, K, N);
rusty1s's avatar
rusty1s committed
430
431
432
      } else if (avg_len <= 32) {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 16>
            <<<dim3(((E + (8 * 16) - 1) / (8 * 16)), (K + 31) / 32),
rusty1s's avatar
rusty1s committed
433
434
               dim3(32, 8), 0, stream>>>(src_data, index_info, out_data, E, K,
                                         N);
rusty1s's avatar
rusty1s committed
435
436
437
      } else {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 32>
            <<<dim3(((E + (8 * 32) - 1) / (8 * 32)), (K + 31) / 32),
rusty1s's avatar
rusty1s committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
               dim3(32, 8), 0, stream>>>(src_data, index_info, out_data, E, K,
                                         N);
      }

      if (REDUCE == MIN || REDUCE == MAX) {
        if (K == 1) {
          segment_coo_arg_kernel<scalar_t>
              <<<BLOCKS(1, E), THREADS, 0, stream>>>(
                  src_data, index_info, out_data, arg_out_data, E, N);
        } else {
          segment_coo_arg_broadcast_kernel<scalar_t>
              <<<BLOCKS(1, E * K), THREADS, 0, stream>>>(
                  src_data, index_info, out_data, arg_out_data, E, K, N);
        }
rusty1s's avatar
rusty1s committed
452
453
      }
    });
rusty1s's avatar
rusty1s committed
454
  });
455

rusty1s's avatar
atomics  
rusty1s committed
456
  if (reduce == "mean") {
rusty1s's avatar
rusty1s committed
457
458
459
460
    auto sizes = index.sizes().vec();
    sizes[reduce_dim] = out.size(reduce_dim);
    auto count = at::zeros(sizes, out.options());

rusty1s's avatar
rusty1s committed
461
462
    AT_DISPATCH_ALL_TYPES(out.scalar_type(), "count_kernel", [&] {
      auto count_data = count.DATA_PTR<scalar_t>();
rusty1s's avatar
rusty1s committed
463
464
      segment_coo_kernel<scalar_t, ADD, false>
          <<<BLOCKS(1, E), THREADS, 0, stream>>>(nullptr, index_info,
rusty1s's avatar
rusty1s committed
465
                                                 count_data, E, N);
rusty1s's avatar
rusty1s committed
466
    });
rusty1s's avatar
rusty1s committed
467
468

    count.clamp_(1);
rusty1s's avatar
rusty1s committed
469
    arg_out = count;
rusty1s's avatar
rusty1s committed
470
471
472
473
474
475

    for (int i = reduce_dim + 1; i < out.dim(); i++) {
      count = count.unsqueeze(-1);
    }

    out.div_(count);
rusty1s's avatar
atomics  
rusty1s committed
476
477
  }

rusty1s's avatar
rusty1s committed
478
  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
479
}