segment_kernel.cu 15.3 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
rusty1s's avatar
rusty1s committed
3
4
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
rusty1s's avatar
rusty1s committed
5

rusty1s's avatar
rusty1s committed
6
#include "atomics.cuh"
rusty1s's avatar
rusty1s committed
7
8
#include "compat.cuh"

rusty1s's avatar
rusty1s committed
9
#define THREADS 256
rusty1s's avatar
rusty1s committed
10
#define BLOCKS(TB, N) (TB * N + THREADS - 1) / THREADS
rusty1s's avatar
rusty1s committed
11
12
#define FULL_MASK 0xffffffff

rusty1s's avatar
rusty1s committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
enum ReductionType { ADD, MEAN, MIN, MAX };
#define AT_DISPATCH_REDUCTION_TYPES(reduce, ...)                               \
  [&] {                                                                        \
    if (reduce == "add") {                                                     \
      const ReductionType REDUCE = ADD;                                        \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "mean") {                                             \
      const ReductionType REDUCE = MEAN;                                       \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "min") {                                              \
      const ReductionType REDUCE = MIN;                                        \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "max") {                                              \
      const ReductionType REDUCE = MAX;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
  }()

template <typename scalar_t, ReductionType REDUCE> struct Reducer {
  static inline __host__ __device__ scalar_t init() {
    if (REDUCE == MIN) {
      return std::numeric_limits<scalar_t>::max();
    } else if (REDUCE == MAX) {
      return std::numeric_limits<scalar_t>::min();
    } else {
      return (scalar_t)0;
    }
  }

  static inline __host__ __device__ void update(scalar_t *val, scalar_t new_val,
                                                int64_t *arg, int64_t new_arg) {
rusty1s's avatar
rusty1s committed
44
45
46
47
    if (REDUCE == ADD || REDUCE == MEAN) {
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
rusty1s's avatar
rusty1s committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
      *val = new_val;
      *arg = new_arg;
    }
  }

  static inline __host__ __device__ void write(scalar_t *address, scalar_t val,
                                               int64_t *arg_address,
                                               int64_t arg, int count) {
    if (REDUCE == ADD) {
      *address = val;
    } else if (REDUCE == MEAN) {
      *address = val / (scalar_t)max(count, 1);
    } else if (REDUCE == MIN || REDUCE == MAX) {
      if (count > 0) {
        *address = val;
        *arg_address = arg;
      } else {
        *address = (scalar_t)0;
      }
    }
  }
rusty1s's avatar
atomics  
rusty1s committed
69

rusty1s's avatar
rusty1s committed
70
71
72
  static inline __device__ void atomic_write(scalar_t *address, scalar_t val,
                                             int64_t *arg_address,
                                             int64_t arg) {
rusty1s's avatar
atomics  
rusty1s committed
73
74
75
76
77
78
79
80
81
82
83
    if (REDUCE == ADD) {
      atomAdd(address, val);
    } else if (REDUCE == MEAN) {
      atomAdd(address, val);
    } else if (REDUCE == MIN && val < *address) {
      atomMin(address, val);
    } else if (REDUCE == MAX && val > *address) {
      atomMax(address, val);
    }

    if (REDUCE == MIN || REDUCE == MAX) {
rusty1s's avatar
rusty1s committed
84
      assert(false); // TODO
rusty1s's avatar
atomics  
rusty1s committed
85
86
87
88
89
90
      __syncthreads();
      if (*address == val) {
        *arg_address = arg;
      }
    }
  }
rusty1s's avatar
rusty1s committed
91
};
rusty1s's avatar
rusty1s committed
92

rusty1s's avatar
atomics  
rusty1s committed
93
94
// We need our own `IndexToOffset` implementation since we do not want to
// access the last element of the `indexptr`.
rusty1s's avatar
rusty1s committed
95
96
97
98
template <typename scalar_t> struct IndexPtrToOffset {
  static inline __host__ __device__ int
  get(int idx, const at::cuda::detail::TensorInfo<scalar_t, int> &info) {
    int offset = idx % (info.sizes[info.dims - 1] - 1);
rusty1s's avatar
rusty1s committed
99
    offset *= info.strides[info.dims - 1];
rusty1s's avatar
rusty1s committed
100
101
102
103
104
105
106
107
108
    idx /= info.sizes[info.dims - 1] - 1;
    for (int i = info.dims - 2; i >= 0; --i) {
      offset += (idx % info.sizes[i]) * info.strides[i];
      idx /= info.sizes[i];
    }
    return offset;
  }
};

rusty1s's avatar
rusty1s committed
109
110
111
112
113
114
template <typename scalar_t, ReductionType REDUCE, int TB>
__global__ void
segment_csr_kernel(const scalar_t *src_data,
                   const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
                   scalar_t *out_data, int64_t *arg_out_data, size_t N,
                   size_t E) {
rusty1s's avatar
rusty1s committed
115

rusty1s's avatar
atomics  
rusty1s committed
116
117
  // Each warp processes exactly `32/TB` rows and aggregates all row values
  // via a parallel reduction.
rusty1s's avatar
rusty1s committed
118

rusty1s's avatar
rusty1s committed
119
  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
rusty1s's avatar
rusty1s committed
120
  int row_idx = thread_idx / TB;
rusty1s's avatar
rusty1s committed
121
122
  int lane_idx = thread_idx & (TB - 1);

rusty1s's avatar
rusty1s committed
123
  if (row_idx < N) {
rusty1s's avatar
rusty1s committed
124
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
rusty1s's avatar
rusty1s committed
125
    int row_start = __ldg(indptr_info.data + offset);
rusty1s's avatar
rusty1s committed
126
127
    int row_end = __ldg(indptr_info.data + offset +
                        indptr_info.strides[indptr_info.dims - 1]);
rusty1s's avatar
rusty1s committed
128

rusty1s's avatar
rusty1s committed
129
    scalar_t val = Reducer<scalar_t, REDUCE>::init();
rusty1s's avatar
atomics  
rusty1s committed
130
    int64_t arg, arg_tmp;
rusty1s's avatar
rusty1s committed
131

rusty1s's avatar
rusty1s committed
132
    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E;
rusty1s's avatar
rusty1s committed
133
    for (int src_idx = row_start + lane_idx; src_idx < row_end; src_idx += TB) {
rusty1s's avatar
rusty1s committed
134
135
      Reducer<scalar_t, REDUCE>::update(&val, src_data[offset + src_idx], &arg,
                                        src_idx);
rusty1s's avatar
rusty1s committed
136
137
138
    }

#pragma unroll
rusty1s's avatar
rusty1s committed
139
140
    for (int i = TB / 2; i > 0; i /= 2) {
      // Parallel reduction inside a single warp.
rusty1s's avatar
rusty1s committed
141
      if (REDUCE == MIN || REDUCE == MAX) {
rusty1s's avatar
atomics  
rusty1s committed
142
        arg_tmp = __shfl_down_sync(FULL_MASK, arg, i);
rusty1s's avatar
rusty1s committed
143
      }
rusty1s's avatar
rusty1s committed
144
      Reducer<scalar_t, REDUCE>::update(
rusty1s's avatar
atomics  
rusty1s committed
145
          &val, __shfl_down_sync(FULL_MASK, val, i), &arg, arg_tmp);
rusty1s's avatar
rusty1s committed
146
    }
rusty1s's avatar
rusty1s committed
147
148

    if (lane_idx == 0) {
rusty1s's avatar
rusty1s committed
149
150
151
      Reducer<scalar_t, REDUCE>::write(out_data + row_idx, val,
                                       arg_out_data + row_idx, arg,
                                       row_end - row_start);
rusty1s's avatar
rusty1s committed
152
153
154
155
    }
  }
}

rusty1s's avatar
rusty1s committed
156
157
template <typename scalar_t, ReductionType REDUCE>
__global__ void segment_csr_broadcast_kernel(
rusty1s's avatar
rusty1s committed
158
159
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
rusty1s's avatar
rusty1s committed
160
    scalar_t *out_data, int64_t *arg_out_data, size_t N, size_t K, size_t E) {
rusty1s's avatar
rusty1s committed
161

rusty1s's avatar
rusty1s committed
162
163
164
  // Each thread processes exactly one row. It turned out that is more
  // efficient than using shared memory due to avoiding synchronization
  // barriers.
rusty1s's avatar
rusty1s committed
165

rusty1s's avatar
rusty1s committed
166
167
168
169
170
  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / K;
  int lane_idx = thread_idx % K;

  if (thread_idx < N * K) {
rusty1s's avatar
rusty1s committed
171
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
rusty1s's avatar
rusty1s committed
172
173
174
    int row_start = __ldg(indptr_info.data + offset);
    int row_end = __ldg(indptr_info.data + offset +
                        indptr_info.strides[indptr_info.dims - 1]);
rusty1s's avatar
rusty1s committed
175

rusty1s's avatar
rusty1s committed
176
177
    scalar_t val = Reducer<scalar_t, REDUCE>::init();
    int64_t arg;
rusty1s's avatar
rusty1s committed
178
179
180

    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E * K;
    for (int src_idx = row_start; src_idx < row_end; src_idx++) {
rusty1s's avatar
rusty1s committed
181
182
      Reducer<scalar_t, REDUCE>::update(
          &val, src_data[offset + K * src_idx + lane_idx], &arg, src_idx);
rusty1s's avatar
rusty1s committed
183
184
    }

rusty1s's avatar
rusty1s committed
185
186
187
    Reducer<scalar_t, REDUCE>::write(out_data + thread_idx, val,
                                     arg_out_data + thread_idx, arg,
                                     row_end - row_start);
rusty1s's avatar
rusty1s committed
188
189
190
  }
}

rusty1s's avatar
rusty1s committed
191
192
193
std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_csr_cuda(at::Tensor src, at::Tensor indptr,
                 at::optional<at::Tensor> out_opt, std::string reduce) {
194

rusty1s's avatar
rusty1s committed
195
  AT_ASSERTM(src.dim() >= indptr.dim());
rusty1s's avatar
rusty1s committed
196
197
198
  for (int i = 0; i < indptr.dim() - 1; i++)
    AT_ASSERTM(src.size(i) == indptr.size(i));

rusty1s's avatar
rusty1s committed
199
  src = src.contiguous();
rusty1s's avatar
rusty1s committed
200
  auto reduce_dim = indptr.dim() - 1;
201
202
203

  at::Tensor out;
  if (out_opt.has_value()) {
rusty1s's avatar
rusty1s committed
204
    out = out_opt.value().contiguous();
205
206
207
208
209
210
211
212
213
    for (int i = 0; i < out.dim(); i++)
      if (i != reduce_dim)
        AT_ASSERTM(src.size(i) == out.size(i));
    AT_ASSERTM(out.size(reduce_dim) == indptr.size(reduce_dim) - 1);
  } else {
    auto sizes = src.sizes().vec();
    sizes[reduce_dim] = indptr.size(reduce_dim) - 1;
    out = at::empty(sizes, src.options());
  }
rusty1s's avatar
rusty1s committed
214

rusty1s's avatar
rusty1s committed
215
  at::optional<at::Tensor> arg_out = at::nullopt;
rusty1s's avatar
rusty1s committed
216
  int64_t *arg_out_data = nullptr;
rusty1s's avatar
rusty1s committed
217
218
  if (reduce == "min" || reduce == "max") {
    arg_out = at::full_like(out, src.size(reduce_dim), indptr.options());
rusty1s's avatar
rusty1s committed
219
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
rusty1s's avatar
rusty1s committed
220
221
  }

rusty1s's avatar
rusty1s committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
  if (reduce == "any") {
    auto index = indptr.narrow(reduce_dim, 0, indptr.size(reduce_dim) - 1);
    auto index2 = indptr.narrow(reduce_dim, 1, indptr.size(reduce_dim) - 1);
    auto mask = (index2 - index) == 0;

    for (int i = reduce_dim + 1; i < src.dim(); i++) {
      index = index.unsqueeze(-1);
      mask = mask.unsqueeze(-1);
    }

    at::gather_out(out, src, reduce_dim, index.expand(out.sizes()));
    out.masked_fill_(mask.expand(out.sizes()), 0);

    return std::make_tuple(out, arg_out);
  }

rusty1s's avatar
rusty1s committed
238
239
  auto N = out.size(reduce_dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
rusty1s's avatar
rusty1s committed
240
  auto E = src.size(reduce_dim);
rusty1s's avatar
rusty1s committed
241

rusty1s's avatar
rusty1s committed
242
  auto indptr_info = at::cuda::detail::getTensorInfo<int64_t, int>(indptr);
rusty1s's avatar
rusty1s committed
243
  auto stream = at::cuda::getCurrentCUDAStream();
rusty1s's avatar
rusty1s committed
244
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr_kernel", [&] {
rusty1s's avatar
rusty1s committed
245
246
247
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

rusty1s's avatar
rusty1s committed
248
249
250
251
252
253
254
255
256
257
258
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (K == 1) {
        segment_csr_kernel<scalar_t, REDUCE, 1>
            <<<BLOCKS(32, N), THREADS, 0, stream>>>(
                src_data, indptr_info, out_data, arg_out_data, N, E);
      } else {
        segment_csr_broadcast_kernel<scalar_t, REDUCE>
            <<<BLOCKS(1, N * K), THREADS, 0, stream>>>(
                src_data, indptr_info, out_data, arg_out_data, N, K, E);
      }
    });
rusty1s's avatar
rusty1s committed
259
260
  });

rusty1s's avatar
rusty1s committed
261
  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
262
263
}

rusty1s's avatar
rusty1s committed
264
265
266
267
268
template <typename scalar_t, ReductionType REDUCE>
__global__ void
segment_coo_kernel(const scalar_t *src_data,
                   const at::cuda::detail::TensorInfo<int64_t, int> index_info,
                   scalar_t *out_data, int64_t *arg_out_data, size_t E) {
rusty1s's avatar
rusty1s committed
269

rusty1s's avatar
rusty1s committed
270
271
272
273
274
275
  // Each thread processes exactly one entry. Within a warp, we perform a
  // parallel reduction across equal indices, and write the intermediate
  // result via atomics.

  int row_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int lane_idx = row_idx & (32 - 1);
rusty1s's avatar
rusty1s committed
276

rusty1s's avatar
rusty1s committed
277
278
279
280
  if (row_idx < E) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        row_idx, index_info);
    int idx = index_info.data[offset], next_idx;
rusty1s's avatar
atomics  
rusty1s committed
281

rusty1s's avatar
rusty1s committed
282
    scalar_t val = src_data[row_idx], tmp;
rusty1s's avatar
atomics  
rusty1s committed
283
    int64_t arg = row_idx % index_info.sizes[index_info.dims - 1], arg_tmp;
rusty1s's avatar
rusty1s committed
284
285

#pragma unroll
rusty1s's avatar
rusty1s committed
286
    for (int i = 1; i < 32; i *= 2) {
rusty1s's avatar
atomics  
rusty1s committed
287
      // Parallel reduction inside a single warp.
rusty1s's avatar
rusty1s committed
288
      tmp = __shfl_up_sync(FULL_MASK, val, i);
rusty1s's avatar
atomics  
rusty1s committed
289
290
291
      if (REDUCE == MIN || REDUCE == MAX) {
        arg_tmp = __shfl_up_sync(FULL_MASK, arg, i);
      }
rusty1s's avatar
rusty1s committed
292
      next_idx = __shfl_up_sync(FULL_MASK, idx, i);
293
      assert(idx >= next_idx);
rusty1s's avatar
rusty1s committed
294
      if (lane_idx >= i && idx == next_idx)
rusty1s's avatar
atomics  
rusty1s committed
295
        Reducer<scalar_t, REDUCE>::update(&val, tmp, &arg, arg_tmp);
rusty1s's avatar
rusty1s committed
296
297
    }

rusty1s's avatar
rusty1s committed
298
299
    next_idx = __shfl_down_sync(FULL_MASK, idx, 1);
    if (lane_idx == 32 - 1 || idx != next_idx) {
rusty1s's avatar
rusty1s committed
300
301
      Reducer<scalar_t, REDUCE>::atomic_write(out_data + idx, val,
                                              arg_out_data + idx, arg);
rusty1s's avatar
rusty1s committed
302
303
304
305
    }
  }
}

rusty1s's avatar
rusty1s committed
306
307
template <typename scalar_t, ReductionType REDUCE, int TB>
__global__ void segment_coo_broadcast_kernel(
rusty1s's avatar
rusty1s committed
308
309
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> index_info,
rusty1s's avatar
rusty1s committed
310
    scalar_t *out_data, int64_t *arg_out_data, size_t E, size_t K) {
rusty1s's avatar
rusty1s committed
311

rusty1s's avatar
rusty1s committed
312
313
314
  // Each thread processes a single column and `TB` index entries. Coalesced
  // read and write is performed in column-major order. The intermediate
  // results are written via atomics.
rusty1s's avatar
rusty1s committed
315

rusty1s's avatar
rusty1s committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  int row_start = (blockIdx.x * blockDim.y + threadIdx.y) * TB;
  int col_idx = blockIdx.y * blockDim.x + threadIdx.x;

  if (row_start < E && col_idx < K) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        row_start, index_info);

    int idx1 = __ldg(index_info.data + offset);
    scalar_t val = src_data[K * row_start + col_idx];

#pragma unroll
    for (int i = 1; i < TB; i++) {
      if (row_start + i >= E)
        break;

      int idx2 = __ldg(index_info.data + offset +
                       i * index_info.strides[index_info.dims - 1]);
333
      assert(idx1 <= idx2);
rusty1s's avatar
rusty1s committed
334
335
336
337
338
339
340
341
342
343
344
      if (idx1 == idx2) {
        val += src_data[K * (row_start + i) + col_idx];
      } else {
        atomAdd(out_data + K * idx1 + col_idx, val);
        val = src_data[K * (row_start + i) + col_idx];
      }
      idx1 = idx2;
    }

    atomAdd(out_data + K * idx1 + col_idx, val);
  }
rusty1s's avatar
rusty1s committed
345
346
}

rusty1s's avatar
rusty1s committed
347
348
349
std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_coo_cuda(at::Tensor src, at::Tensor index, at::Tensor out,
                 std::string reduce) {
rusty1s's avatar
rusty1s committed
350
351
352
353
354
  AT_ASSERTM(src.dim() >= index.dim());
  for (int i = 0; i < index.dim(); i++)
    AT_ASSERTM(src.size(i) == index.size(i));

  src = src.contiguous();
rusty1s's avatar
rusty1s committed
355
  out = out.contiguous();
rusty1s's avatar
rusty1s committed
356
  auto reduce_dim = index.dim() - 1;
rusty1s's avatar
rusty1s committed
357

rusty1s's avatar
rusty1s committed
358
359
360
  for (int i = 0; i < out.dim(); i++)
    if (i != reduce_dim)
      AT_ASSERTM(src.size(i) == out.size(i));
rusty1s's avatar
rusty1s committed
361

rusty1s's avatar
rusty1s committed
362
  at::optional<at::Tensor> arg_out = at::nullopt;
rusty1s's avatar
rusty1s committed
363
  int64_t *arg_out_data = nullptr;
rusty1s's avatar
rusty1s committed
364
365
  if (reduce == "min" || reduce == "max") {
    arg_out = at::full_like(out, src.size(reduce_dim), index.options());
rusty1s's avatar
rusty1s committed
366
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
rusty1s's avatar
rusty1s committed
367
368
  }

rusty1s's avatar
rusty1s committed
369
370
371
372
373
374
375
376
  if (reduce == "any") {
    for (int i = reduce_dim + 1; i < src.dim(); i++) {
      index = index.unsqueeze(-1);
    }
    out.scatter_(reduce_dim, index.expand(src.sizes()), src);
    return std::make_tuple(out, arg_out);
  }

rusty1s's avatar
rusty1s committed
377
378
  auto E = index.numel();
  auto K = src.numel() / index.numel();
rusty1s's avatar
rusty1s committed
379
  auto avg_len = (float)src.size(reduce_dim) / (float)out.size(reduce_dim);
rusty1s's avatar
rusty1s committed
380

rusty1s's avatar
rusty1s committed
381
382
  auto index_info = at::cuda::detail::getTensorInfo<int64_t, int>(index);
  auto stream = at::cuda::getCurrentCUDAStream();
rusty1s's avatar
rusty1s committed
383
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_coo_kernel", [&] {
rusty1s's avatar
rusty1s committed
384
385
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();
rusty1s's avatar
rusty1s committed
386

rusty1s's avatar
rusty1s committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (K == 1) {
        segment_coo_kernel<scalar_t, REDUCE>
            <<<BLOCKS(1, E), THREADS, 0, stream>>>(src_data, index_info,
                                                   out_data, arg_out_data, E);
      } else if (avg_len <= 8) {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 4>
            <<<dim3(((E + (8 * 4) - 1) / (8 * 4)), (K + 31) / 32), dim3(32, 8),
               0, stream>>>(src_data, index_info, out_data, arg_out_data, E, K);
      } else if (avg_len <= 16) {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 8>
            <<<dim3(((E + (8 * 8) - 1) / (8 * 8)), (K + 31) / 32), dim3(32, 8),
               0, stream>>>(src_data, index_info, out_data, arg_out_data, E, K);
      } else if (avg_len <= 32) {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 16>
            <<<dim3(((E + (8 * 16) - 1) / (8 * 16)), (K + 31) / 32),
               dim3(32, 8), 0, stream>>>(src_data, index_info, out_data,
                                         arg_out_data, E, K);
      } else {
        segment_coo_broadcast_kernel<scalar_t, REDUCE, 32>
            <<<dim3(((E + (8 * 32) - 1) / (8 * 32)), (K + 31) / 32),
               dim3(32, 8), 0, stream>>>(src_data, index_info, out_data,
                                         arg_out_data, E, K);
      }
    });
rusty1s's avatar
rusty1s committed
412
  });
413

rusty1s's avatar
atomics  
rusty1s committed
414
  if (reduce == "mean") {
rusty1s's avatar
rusty1s committed
415
416
417
418
419
420
421
    auto count = at::empty_like(index, out.options());
    AT_DISPATCH_ALL_TYPES(out.scalar_type(), "count_kernel", [&] {
      auto count_data = count.DATA_PTR<scalar_t>();
      AT_ASSERTM(false); // TODO
    });
    out = out / count;
    arg_out = count;
rusty1s's avatar
atomics  
rusty1s committed
422
423
  }

rusty1s's avatar
rusty1s committed
424
  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
425
}