max.py 3.12 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from torch.autograd import Function

rusty1s's avatar
rusty1s committed
3
from .utils.ext import get_func
rusty1s's avatar
rusty1s committed
4
5
6
7
8
9
10
11
from .utils.gen import gen


class ScatterMax(Function):
    @staticmethod
    def forward(ctx, out, src, index, dim):
        arg = index.new_full(out.size(), -1)
        func = get_func('scatter_max', src)
rusty1s's avatar
rusty1s committed
12
        func(src, index, out, arg, dim)
rusty1s's avatar
rusty1s committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

        ctx.mark_dirty(out)
        ctx.dim = dim
        ctx.save_for_backward(index, arg)

        return out, arg

    @staticmethod
    def backward(ctx, grad_out, grad_arg):
        index, arg = ctx.saved_variables

        grad_src = None
        if ctx.needs_input_grad[1]:
            grad_src = grad_out.new_zeros(index.size())
            func = get_func('index_backward', grad_out)
rusty1s's avatar
rusty1s committed
28
            func(grad_out, index, arg, grad_src, ctx.dim)
rusty1s's avatar
rusty1s committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

        return None, grad_src, None, None


def scatter_max(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/max.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Maximizes all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions maximize** (`cf.` :meth:`~torch_scatter.scatter_add`).
    The second return tensor contains index location in :attr:`src` of each
    maximum value (known as argmax).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \max(\mathrm{out}_i, \max_j(\mathrm{src}_j))

rusty1s's avatar
rusty1s committed
56
    where :math:`\max_j` is over :math:`j` such that
rusty1s's avatar
rusty1s committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    :math:`\mathrm{index}_j = i`.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`0`)

    :rtype: (:class:`Tensor`, :class:`LongTensor`)

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_max
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
rusty1s committed
82
83
84
        src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_zeros((2, 6))
rusty1s's avatar
rusty1s committed
85
86
87

        out, argmax = scatter_max(src, index, out=out)

rusty1s's avatar
rusty1s committed
88
        print(out)
rusty1s's avatar
rusty1s committed
89
        print(argmax)
rusty1s's avatar
rusty1s committed
90
91
92

    .. testoutput::

rusty1s's avatar
rusty1s committed
93
94
95
96
       tensor([[ 0,  0,  4,  3,  2,  0],
               [ 2,  4,  3,  0,  0,  0]])
       tensor([[-1, -1,  3,  4,  0,  1],
               [ 1,  4,  3, -1, -1, -1]])
rusty1s's avatar
rusty1s committed
97
98
99
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return ScatterMax.apply(out, src, index, dim)