max.py 3.12 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from torch.autograd import Function

from .utils.ffi import get_func
from .utils.gen import gen


class ScatterMax(Function):
    @staticmethod
    def forward(ctx, out, src, index, dim):
        arg = index.new_full(out.size(), -1)
        func = get_func('scatter_max', src)
        func(dim, out, index, src, arg)

        ctx.mark_dirty(out)
        ctx.dim = dim
        ctx.save_for_backward(index, arg)

        return out, arg

    @staticmethod
    def backward(ctx, grad_out, grad_arg):
        index, arg = ctx.saved_variables

        grad_src = None
        if ctx.needs_input_grad[1]:
            grad_src = grad_out.new_zeros(index.size())
            func = get_func('index_backward', grad_out)
            func(ctx.dim, grad_src, index, grad_out, arg)

        return None, grad_src, None, None


def scatter_max(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/max.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Maximizes all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions maximize** (`cf.` :meth:`~torch_scatter.scatter_add`).
    The second return tensor contains index location in :attr:`src` of each
    maximum value (known as argmax).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \max(\mathrm{out}_i, \max_j(\mathrm{src}_j))

rusty1s's avatar
rusty1s committed
56
    where :math:`\max_j` is over :math:`j` such that
rusty1s's avatar
rusty1s committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    :math:`\mathrm{index}_j = i`.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`0`)

    :rtype: (:class:`Tensor`, :class:`LongTensor`)

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_max
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
rusty1s committed
82
83
84
        src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_zeros((2, 6))
rusty1s's avatar
rusty1s committed
85
86
87

        out, argmax = scatter_max(src, index, out=out)

rusty1s's avatar
rusty1s committed
88
        print(out)
rusty1s's avatar
rusty1s committed
89
        print(argmax)
rusty1s's avatar
rusty1s committed
90
91
92

    .. testoutput::

rusty1s's avatar
rusty1s committed
93
94
95
96
       tensor([[ 0,  0,  4,  3,  2,  0],
               [ 2,  4,  3,  0,  0,  0]])
       tensor([[-1, -1,  3,  4,  0,  1],
               [ 1,  4,  3, -1, -1, -1]])
rusty1s's avatar
rusty1s committed
97
98
99
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return ScatterMax.apply(out, src, index, dim)