main.py 6.41 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
import time
import os.path as osp
import itertools

import wget
from scipy.io import loadmat
import torch

from torch_scatter import scatter_add
rusty1s's avatar
rusty1s committed
10
from torch_scatter import segment_csr, segment_coo
rusty1s's avatar
rusty1s committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

iters = 20
device = 'cuda'
sizes = [1, 16, 32, 64, 128, 256, 512]

long_rows = [
    ('Janna', 'StocF-1465'),
    ('GHS_psdef', 'ldoor'),
]
short_rows = [
    ('DIMACS10', 'citationCiteseer'),
    ('SNAP', 'web-Stanford'),
]

url = 'https://sparse.tamu.edu/mat/{}/{}.mat'
for group, name in itertools.chain(long_rows, short_rows):
    if not osp.exists(f'{name}.mat'):
        print(f'Downloading {group}/{name}:')
        wget.download(url.format(group, name))
        print('')

for _ in range(10):  # Warmup.
    torch.randn(100, 100, device=device).sum()


def bold(text, flag=True):
    return f'\033[1m{text}\033[0m' if flag else text


@torch.no_grad()
def correctness(dataset):
    group, name = dataset
    mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(device, torch.long)
    row = torch.from_numpy(mat.tocoo().row).to(device, torch.long)
    dim_size = rowptr.size(0) - 1

    for size in sizes:
        try:
            x = torch.randn((row.size(0), size), device=device)
            x = x.unsqueeze(-1) if size == 1 else x

            out1 = scatter_add(x, row, dim=0, dim_size=dim_size)
rusty1s's avatar
rusty1s committed
54
55
            out2 = segment_coo(x, row, dim_size=dim_size)
            out3 = segment_csr(x, rowptr)
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

            assert torch.allclose(out1, out2, atol=1e-4)
            assert torch.allclose(out1, out3, atol=1e-4)
        except RuntimeError:
            torch.cuda.empty_cache()


@torch.no_grad()
def timing(dataset):
    group, name = dataset
    mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(device, torch.long)
    row = torch.from_numpy(mat.tocoo().row).to(device, torch.long)
    row_perm = row[torch.randperm(row.size(0))]
    dim_size = rowptr.size(0) - 1
    avg_row_len = row.size(0) / dim_size

    t1, t2, t3, t4, t5, t6 = [], [], [], [], [], []
    for size in sizes:
        try:
            x = torch.randn((row.size(0), size), device=device)
            x = x.unsqueeze(-1) if size == 1 else x

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = scatter_add(x, row, dim=0, dim_size=dim_size)
                    del out
                torch.cuda.synchronize()
                t1.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t1.append(float('inf'))

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = scatter_add(x, row_perm, dim=0, dim_size=dim_size)
                    del out
                torch.cuda.synchronize()
                t2.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t2.append(float('inf'))

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
rusty1s's avatar
rusty1s committed
107
                    out = segment_coo(x, row, dim_size=dim_size)
rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
115
116
117
118
                    del out
                torch.cuda.synchronize()
                t3.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t3.append(float('inf'))

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
rusty1s's avatar
rusty1s committed
119
                    out = segment_csr(x, rowptr)
rusty1s's avatar
rusty1s committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                    del out
                torch.cuda.synchronize()
                t4.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t4.append(float('inf'))

            del x

        except RuntimeError:
            torch.cuda.empty_cache()
            for t in (t1, t2, t3, t4):
                t.append(float('inf'))

        try:
            x = torch.randn((dim_size, int(avg_row_len + 1), size),
                            device=device)
            x = x.unsqueeze(-1) if size == 1 else x

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = x.sum(dim=1)
                    del out
                torch.cuda.synchronize()
                t5.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t5.append(float('inf'))

            x = x.view(dim_size, size, int(avg_row_len + 1))
            x = x.unsqueeze(-2) if size == 1 else x

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = x.sum(dim=-1)
                    del out
                torch.cuda.synchronize()
                t6.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t6.append(float('inf'))

            del x

        except RuntimeError:
            torch.cuda.empty_cache()
            for t in (t5, t6):
                t.append(float('inf'))

    ts = torch.tensor([t1, t2, t3, t4, t5, t6])
    winner = torch.zeros_like(ts, dtype=torch.bool)
    winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
    winner = winner.tolist()

    name = f'{group}/{name}'
    print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):')
rusty1s's avatar
typos  
rusty1s committed
180
    print('\t'.join(['       '] + [f'{size:>5}' for size in sizes]))
rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    print('\t'.join([bold('SCA_ROW')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
    print('\t'.join([bold('SCA_COL')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
    print('\t'.join([bold('SEG_COO')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
    print('\t'.join([bold('SEG_CSR')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
    print('\t'.join([bold('DENSE1 ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t5, winner[4])]))
    print('\t'.join([bold('DENSE2 ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t6, winner[5])]))
    print()


for dataset in itertools.chain(short_rows, long_rows):
    correctness(dataset)
    timing(dataset)