main.py 6.45 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import time
import os.path as osp
import itertools

import wget
from scipy.io import loadmat
import torch

from torch_scatter import scatter_add
from torch_scatter.segment import segment_add_csr, segment_add_coo

iters = 20
device = 'cuda'
sizes = [1, 16, 32, 64, 128, 256, 512]

long_rows = [
    ('Janna', 'StocF-1465'),
    ('GHS_psdef', 'ldoor'),
]
short_rows = [
    ('DIMACS10', 'citationCiteseer'),
    ('SNAP', 'web-Stanford'),
]

url = 'https://sparse.tamu.edu/mat/{}/{}.mat'
for group, name in itertools.chain(long_rows, short_rows):
    if not osp.exists(f'{name}.mat'):
        print(f'Downloading {group}/{name}:')
        wget.download(url.format(group, name))
        print('')

for _ in range(10):  # Warmup.
    torch.randn(100, 100, device=device).sum()


def bold(text, flag=True):
    return f'\033[1m{text}\033[0m' if flag else text


@torch.no_grad()
def correctness(dataset):
    group, name = dataset
    mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(device, torch.long)
    row = torch.from_numpy(mat.tocoo().row).to(device, torch.long)
    dim_size = rowptr.size(0) - 1

    for size in sizes:
        try:
            x = torch.randn((row.size(0), size), device=device)
            x = x.unsqueeze(-1) if size == 1 else x

            out1 = scatter_add(x, row, dim=0, dim_size=dim_size)
            out2 = segment_add_coo(x, row, dim_size=dim_size)
            out3 = segment_add_csr(x, rowptr)

            assert torch.allclose(out1, out2, atol=1e-4)
            assert torch.allclose(out1, out3, atol=1e-4)
        except RuntimeError:
            torch.cuda.empty_cache()


@torch.no_grad()
def timing(dataset):
    group, name = dataset
    mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(device, torch.long)
    row = torch.from_numpy(mat.tocoo().row).to(device, torch.long)
    row_perm = row[torch.randperm(row.size(0))]
    dim_size = rowptr.size(0) - 1
    avg_row_len = row.size(0) / dim_size

    t1, t2, t3, t4, t5, t6 = [], [], [], [], [], []
    for size in sizes:
        try:
            x = torch.randn((row.size(0), size), device=device)
            x = x.unsqueeze(-1) if size == 1 else x

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = scatter_add(x, row, dim=0, dim_size=dim_size)
                    del out
                torch.cuda.synchronize()
                t1.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t1.append(float('inf'))

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = scatter_add(x, row_perm, dim=0, dim_size=dim_size)
                    del out
                torch.cuda.synchronize()
                t2.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t2.append(float('inf'))

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = segment_add_coo(x, row, dim_size=dim_size)
                    del out
                torch.cuda.synchronize()
                t3.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t3.append(float('inf'))

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = segment_add_csr(x, rowptr)
                    del out
                torch.cuda.synchronize()
                t4.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t4.append(float('inf'))

            del x

        except RuntimeError:
            torch.cuda.empty_cache()
            for t in (t1, t2, t3, t4):
                t.append(float('inf'))

        try:
            x = torch.randn((dim_size, int(avg_row_len + 1), size),
                            device=device)
            x = x.unsqueeze(-1) if size == 1 else x

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = x.sum(dim=1)
                    del out
                torch.cuda.synchronize()
                t5.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t5.append(float('inf'))

            x = x.view(dim_size, size, int(avg_row_len + 1))
            x = x.unsqueeze(-2) if size == 1 else x

            try:
                torch.cuda.synchronize()
                t = time.perf_counter()
                for _ in range(iters):
                    out = x.sum(dim=-1)
                    del out
                torch.cuda.synchronize()
                t6.append(time.perf_counter() - t)
            except RuntimeError:
                torch.cuda.empty_cache()
                t6.append(float('inf'))

            del x

        except RuntimeError:
            torch.cuda.empty_cache()
            for t in (t5, t6):
                t.append(float('inf'))

    ts = torch.tensor([t1, t2, t3, t4, t5, t6])
    winner = torch.zeros_like(ts, dtype=torch.bool)
    winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
    winner = winner.tolist()

    name = f'{group}/{name}'
    print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):')
    print('\t'.join(['       '] + [f'{size:>7}' for size in sizes]))
    print('\t'.join([bold('SCA_ROW')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
    print('\t'.join([bold('SCA_COL')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
    print('\t'.join([bold('SEG_COO')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
    print('\t'.join([bold('SEG_CSR')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
    print('\t'.join([bold('DENSE1 ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t5, winner[4])]))
    print('\t'.join([bold('DENSE2 ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t6, winner[5])]))
    print()


for dataset in itertools.chain(short_rows, long_rows):
    correctness(dataset)
    timing(dataset)
    break