test_scatter.py 6.03 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from itertools import product

import pytest
import torch
import torch_scatter
Matthias Fey's avatar
Matthias Fey committed
6
from torch.autograd import gradcheck
Matthias Fey's avatar
Matthias Fey committed
7
from torch_scatter.testing import devices, dtypes, reductions, tensor
rusty1s's avatar
rusty1s committed
8

rusty1s's avatar
rusty1s committed
9
10
reductions = reductions + ['mul']

rusty1s's avatar
rusty1s committed
11
12
13
14
tests = [
    {
        'src': [1, 3, 2, 4, 5, 6],
        'index': [0, 1, 0, 1, 1, 3],
Matthias Fey's avatar
Matthias Fey committed
15
        'dim': -1,
rusty1s's avatar
rusty1s committed
16
17
        'sum': [3, 12, 0, 6],
        'add': [3, 12, 0, 6],
rusty1s's avatar
rusty1s committed
18
        'mul': [2, 60, 1, 6],
rusty1s's avatar
rusty1s committed
19
20
21
22
23
24
25
26
27
28
29
30
        'mean': [1.5, 4, 0, 6],
        'min': [1, 3, 0, 6],
        'arg_min': [0, 1, 6, 5],
        'max': [2, 5, 0, 6],
        'arg_max': [2, 4, 6, 5],
    },
    {
        'src': [[1, 2], [5, 6], [3, 4], [7, 8], [9, 10], [11, 12]],
        'index': [0, 1, 0, 1, 1, 3],
        'dim': 0,
        'sum': [[4, 6], [21, 24], [0, 0], [11, 12]],
        'add': [[4, 6], [21, 24], [0, 0], [11, 12]],
rusty1s's avatar
rusty1s committed
31
        'mul': [[1 * 3, 2 * 4], [5 * 7 * 9, 6 * 8 * 10], [1, 1], [11, 12]],
rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
41
42
43
        'mean': [[2, 3], [7, 8], [0, 0], [11, 12]],
        'min': [[1, 2], [5, 6], [0, 0], [11, 12]],
        'arg_min': [[0, 0], [1, 1], [6, 6], [5, 5]],
        'max': [[3, 4], [9, 10], [0, 0], [11, 12]],
        'arg_max': [[2, 2], [4, 4], [6, 6], [5, 5]],
    },
    {
        'src': [[1, 5, 3, 7, 9, 11], [2, 4, 8, 6, 10, 12]],
        'index': [[0, 1, 0, 1, 1, 3], [0, 0, 1, 0, 1, 2]],
        'dim': 1,
        'sum': [[4, 21, 0, 11], [12, 18, 12, 0]],
        'add': [[4, 21, 0, 11], [12, 18, 12, 0]],
rusty1s's avatar
rusty1s committed
44
        'mul': [[1 * 3, 5 * 7 * 9, 1, 11], [2 * 4 * 6, 8 * 10, 12, 1]],
rusty1s's avatar
rusty1s committed
45
46
47
48
49
50
51
52
53
54
55
56
        'mean': [[2, 7, 0, 11], [4, 9, 12, 0]],
        'min': [[1, 5, 0, 11], [2, 8, 12, 0]],
        'arg_min': [[0, 1, 6, 5], [0, 2, 5, 6]],
        'max': [[3, 9, 0, 11], [6, 10, 12, 0]],
        'arg_max': [[2, 4, 6, 5], [3, 4, 5, 6]],
    },
    {
        'src': [[[1, 2], [5, 6], [3, 4]], [[10, 11], [7, 9], [12, 13]]],
        'index': [[0, 1, 0], [2, 0, 2]],
        'dim': 1,
        'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
        'add': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
rusty1s's avatar
rusty1s committed
57
        'mul': [[[3, 8], [5, 6], [1, 1]], [[7, 9], [1, 1], [120, 11 * 13]]],
rusty1s's avatar
rusty1s committed
58
59
60
61
62
63
64
65
66
67
68
69
        'mean': [[[2, 3], [5, 6], [0, 0]], [[7, 9], [0, 0], [11, 12]]],
        'min': [[[1, 2], [5, 6], [0, 0]], [[7, 9], [0, 0], [10, 11]]],
        'arg_min': [[[0, 0], [1, 1], [3, 3]], [[1, 1], [3, 3], [0, 0]]],
        'max': [[[3, 4], [5, 6], [0, 0]], [[7, 9], [0, 0], [12, 13]]],
        'arg_max': [[[2, 2], [1, 1], [3, 3]], [[1, 1], [3, 3], [2, 2]]],
    },
    {
        'src': [[1, 3], [2, 4]],
        'index': [[0, 0], [0, 0]],
        'dim': 1,
        'sum': [[4], [6]],
        'add': [[4], [6]],
rusty1s's avatar
rusty1s committed
70
        'mul': [[3], [8]],
rusty1s's avatar
rusty1s committed
71
72
73
74
75
76
77
78
79
80
81
82
        'mean': [[2], [3]],
        'min': [[1], [2]],
        'arg_min': [[0], [0]],
        'max': [[3], [4]],
        'arg_max': [[1], [1]],
    },
    {
        'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]],
        'index': [[0, 0], [0, 0]],
        'dim': 1,
        'sum': [[[4, 4]], [[6, 6]]],
        'add': [[[4, 4]], [[6, 6]]],
rusty1s's avatar
rusty1s committed
83
        'mul': [[[3, 3]], [[8, 8]]],
rusty1s's avatar
rusty1s committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        'mean': [[[2, 2]], [[3, 3]]],
        'min': [[[1, 1]], [[2, 2]]],
        'arg_min': [[[0, 0]], [[0, 0]]],
        'max': [[[3, 3]], [[4, 4]]],
        'arg_max': [[[1, 1]], [[1, 1]]],
    },
]


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_forward(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

101
102
103
104
105
106
107
    fn = getattr(torch_scatter, 'scatter_' + reduce)
    jit = torch.jit.script(fn)
    out1 = fn(src, index, dim)
    out2 = jit(src, index, dim)
    if isinstance(out1, tuple):
        out1, arg_out1 = out1
        out2, arg_out2 = out2
rusty1s's avatar
rusty1s committed
108
        arg_expected = tensor(test['arg_' + reduce], torch.long, device)
109
110
111
112
        assert torch.all(arg_out1 == arg_expected)
        assert arg_out1.tolist() == arg_out1.tolist()
    assert torch.all(out1 == expected)
    assert out1.tolist() == out2.tolist()
rusty1s's avatar
rusty1s committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136


@pytest.mark.parametrize('test,reduce,device',
                         product(tests, reductions, devices))
def test_backward(test, reduce, device):
    src = tensor(test['src'], torch.double, device)
    src.requires_grad_()
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']

    assert gradcheck(torch_scatter.scatter,
                     (src, index, dim, None, None, reduce))


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_out(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    out = torch.full_like(expected, -2)

rusty1s's avatar
rusty1s committed
137
    getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim, out)
rusty1s's avatar
rusty1s committed
138
139
140

    if reduce == 'sum' or reduce == 'add':
        expected = expected - 2
rusty1s's avatar
rusty1s committed
141
142
    elif reduce == 'mul':
        expected = out  # We can not really test this here.
rusty1s's avatar
rusty1s committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    elif reduce == 'mean':
        expected = out  # We can not really test this here.
    elif reduce == 'min':
        expected = expected.fill_(-2)
    elif reduce == 'max':
        expected[expected == 0] = -2
    else:
        raise ValueError

    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_non_contiguous(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    if src.dim() > 1:
        src = src.transpose(0, 1).contiguous().transpose(0, 1)
    if index.dim() > 1:
        index = index.transpose(0, 1).contiguous().transpose(0, 1)

rusty1s's avatar
rusty1s committed
168
    out = getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim)
rusty1s's avatar
rusty1s committed
169
170
    if isinstance(out, tuple):
        out, arg_out = out
rusty1s's avatar
rusty1s committed
171
        arg_expected = tensor(test['arg_' + reduce], torch.long, device)
rusty1s's avatar
rusty1s committed
172
173
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)