test_scatter.py 5.81 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
from itertools import product

import pytest
import torch
from torch.autograd import gradcheck
import torch_scatter

rusty1s's avatar
rusty1s committed
8
from .utils import reductions, tensor, dtypes, devices
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
reductions = reductions + ['mul']

rusty1s's avatar
rusty1s committed
12
13
14
15
16
17
18
tests = [
    {
        'src': [1, 3, 2, 4, 5, 6],
        'index': [0, 1, 0, 1, 1, 3],
        'dim': 0,
        'sum': [3, 12, 0, 6],
        'add': [3, 12, 0, 6],
rusty1s's avatar
rusty1s committed
19
        'mul': [2, 60, 1, 6],
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
26
27
28
29
30
31
        'mean': [1.5, 4, 0, 6],
        'min': [1, 3, 0, 6],
        'arg_min': [0, 1, 6, 5],
        'max': [2, 5, 0, 6],
        'arg_max': [2, 4, 6, 5],
    },
    {
        'src': [[1, 2], [5, 6], [3, 4], [7, 8], [9, 10], [11, 12]],
        'index': [0, 1, 0, 1, 1, 3],
        'dim': 0,
        'sum': [[4, 6], [21, 24], [0, 0], [11, 12]],
        'add': [[4, 6], [21, 24], [0, 0], [11, 12]],
rusty1s's avatar
rusty1s committed
32
        'mul': [[1 * 3, 2 * 4], [5 * 7 * 9, 6 * 8 * 10], [1, 1], [11, 12]],
rusty1s's avatar
rusty1s committed
33
34
35
36
37
38
39
40
41
42
43
44
        'mean': [[2, 3], [7, 8], [0, 0], [11, 12]],
        'min': [[1, 2], [5, 6], [0, 0], [11, 12]],
        'arg_min': [[0, 0], [1, 1], [6, 6], [5, 5]],
        'max': [[3, 4], [9, 10], [0, 0], [11, 12]],
        'arg_max': [[2, 2], [4, 4], [6, 6], [5, 5]],
    },
    {
        'src': [[1, 5, 3, 7, 9, 11], [2, 4, 8, 6, 10, 12]],
        'index': [[0, 1, 0, 1, 1, 3], [0, 0, 1, 0, 1, 2]],
        'dim': 1,
        'sum': [[4, 21, 0, 11], [12, 18, 12, 0]],
        'add': [[4, 21, 0, 11], [12, 18, 12, 0]],
rusty1s's avatar
rusty1s committed
45
        'mul': [[1 * 3, 5 * 7 * 9, 1, 11], [2 * 4 * 6, 8 * 10, 12, 1]],
rusty1s's avatar
rusty1s committed
46
47
48
49
50
51
52
53
54
55
56
57
        'mean': [[2, 7, 0, 11], [4, 9, 12, 0]],
        'min': [[1, 5, 0, 11], [2, 8, 12, 0]],
        'arg_min': [[0, 1, 6, 5], [0, 2, 5, 6]],
        'max': [[3, 9, 0, 11], [6, 10, 12, 0]],
        'arg_max': [[2, 4, 6, 5], [3, 4, 5, 6]],
    },
    {
        'src': [[[1, 2], [5, 6], [3, 4]], [[10, 11], [7, 9], [12, 13]]],
        'index': [[0, 1, 0], [2, 0, 2]],
        'dim': 1,
        'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
        'add': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
rusty1s's avatar
rusty1s committed
58
        'mul': [[[3, 8], [5, 6], [1, 1]], [[7, 9], [1, 1], [120, 11 * 13]]],
rusty1s's avatar
rusty1s committed
59
60
61
62
63
64
65
66
67
68
69
70
        'mean': [[[2, 3], [5, 6], [0, 0]], [[7, 9], [0, 0], [11, 12]]],
        'min': [[[1, 2], [5, 6], [0, 0]], [[7, 9], [0, 0], [10, 11]]],
        'arg_min': [[[0, 0], [1, 1], [3, 3]], [[1, 1], [3, 3], [0, 0]]],
        'max': [[[3, 4], [5, 6], [0, 0]], [[7, 9], [0, 0], [12, 13]]],
        'arg_max': [[[2, 2], [1, 1], [3, 3]], [[1, 1], [3, 3], [2, 2]]],
    },
    {
        'src': [[1, 3], [2, 4]],
        'index': [[0, 0], [0, 0]],
        'dim': 1,
        'sum': [[4], [6]],
        'add': [[4], [6]],
rusty1s's avatar
rusty1s committed
71
        'mul': [[3], [8]],
rusty1s's avatar
rusty1s committed
72
73
74
75
76
77
78
79
80
81
82
83
        'mean': [[2], [3]],
        'min': [[1], [2]],
        'arg_min': [[0], [0]],
        'max': [[3], [4]],
        'arg_max': [[1], [1]],
    },
    {
        'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]],
        'index': [[0, 0], [0, 0]],
        'dim': 1,
        'sum': [[[4, 4]], [[6, 6]]],
        'add': [[[4, 4]], [[6, 6]]],
rusty1s's avatar
rusty1s committed
84
        'mul': [[[3, 3]], [[8, 8]]],
rusty1s's avatar
rusty1s committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        'mean': [[[2, 2]], [[3, 3]]],
        'min': [[[1, 1]], [[2, 2]]],
        'arg_min': [[[0, 0]], [[0, 0]]],
        'max': [[[3, 3]], [[4, 4]]],
        'arg_max': [[[1, 1]], [[1, 1]]],
    },
]


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_forward(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

rusty1s's avatar
rusty1s committed
102
    out = getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim)
rusty1s's avatar
rusty1s committed
103
104
    if isinstance(out, tuple):
        out, arg_out = out
rusty1s's avatar
rusty1s committed
105
        arg_expected = tensor(test['arg_' + reduce], torch.long, device)
rusty1s's avatar
rusty1s committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,device',
                         product(tests, reductions, devices))
def test_backward(test, reduce, device):
    src = tensor(test['src'], torch.double, device)
    src.requires_grad_()
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']

    assert gradcheck(torch_scatter.scatter,
                     (src, index, dim, None, None, reduce))


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_out(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    out = torch.full_like(expected, -2)

rusty1s's avatar
rusty1s committed
132
    getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim, out)
rusty1s's avatar
rusty1s committed
133
134
135

    if reduce == 'sum' or reduce == 'add':
        expected = expected - 2
rusty1s's avatar
rusty1s committed
136
137
    elif reduce == 'mul':
        expected = out  # We can not really test this here.
rusty1s's avatar
rusty1s committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    elif reduce == 'mean':
        expected = out  # We can not really test this here.
    elif reduce == 'min':
        expected = expected.fill_(-2)
    elif reduce == 'max':
        expected[expected == 0] = -2
    else:
        raise ValueError

    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_non_contiguous(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    if src.dim() > 1:
        src = src.transpose(0, 1).contiguous().transpose(0, 1)
    if index.dim() > 1:
        index = index.transpose(0, 1).contiguous().transpose(0, 1)

rusty1s's avatar
rusty1s committed
163
    out = getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim)
rusty1s's avatar
rusty1s committed
164
165
    if isinstance(out, tuple):
        out, arg_out = out
rusty1s's avatar
rusty1s committed
166
        arg_expected = tensor(test['arg_' + reduce], torch.long, device)
rusty1s's avatar
rusty1s committed
167
168
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)