segment_csr_cpu.cpp 4.76 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include "segment_csr_cpu.h"

#include "index_info.h"
#include "reducer.h"
#include "utils.h"

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_csr_cpu(torch::Tensor src, torch::Tensor indptr,
                torch::optional<torch::Tensor> optional_out,
                std::string reduce) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (optional_out.has_value())
    CHECK_CPU(optional_out.value());

  CHECK_INPUT(src.dim() >= indptr.dim());

  auto sizes = indptr.sizes().vec();
  for (auto i = 0; i < indptr.dim() - 1; i++)
    sizes[i] = src.size(i);
  indptr = indptr.expand(sizes);

  auto dim = indptr.dim() - 1;

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
rusty1s's avatar
rusty1s committed
30
    for (auto i = 0; i < out.dim(); i++)
rusty1s's avatar
rusty1s committed
31
32
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
rusty1s's avatar
rusty1s committed
33
    CHECK_INPUT(src.numel() == 0 || out.size(dim) == indptr.size(dim) - 1);
rusty1s's avatar
rusty1s committed
34
35
  } else {
    sizes = src.sizes().vec();
rusty1s's avatar
rusty1s committed
36
    sizes[dim] = std::max<int64_t>(indptr.size(dim) - 1, 0);
rusty1s's avatar
rusty1s committed
37
38
39
40
41
42
43
44
45
46
    out = torch::empty(sizes, src.options());
  }

  torch::optional<torch::Tensor> arg_out = torch::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
    arg_out = torch::full(out.sizes(), src.size(dim), indptr.options());
    arg_out_data = arg_out.value().data_ptr<int64_t>();
  }

rusty1s's avatar
rusty1s committed
47
48
49
  if (src.numel() == 0)
    return std::make_tuple(out, arg_out);

rusty1s's avatar
rusty1s committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  auto N = out.size(dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
  auto E = src.size(dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  std::vector<int64_t> args(K);
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    std::vector<scalar_t> vals(K);
    int64_t row_start, row_end;
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (auto n = 0; n < N; n++) {
        auto offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
        row_start = indptr_info.data[offset];
        row_end = indptr_info.data[offset + stride];

        offset = (n / (indptr.size(-1) - 1)) * E * K;
        for (auto k = 0; k < K; k++)
          vals[k] = Reducer<scalar_t, REDUCE>::init();

rusty1s's avatar
rusty1s committed
73
        for (auto e = row_start; e < row_end; e++)
rusty1s's avatar
rusty1s committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
          for (auto k = 0; k < K; k++)
            Reducer<scalar_t, REDUCE>::update(
                &vals[k], src_data[offset + e * K + k], &args[k], e);

        for (auto k = 0; k < K; k++)
          Reducer<scalar_t, REDUCE>::write(out_data + n * K + k, vals[k],
                                           arg_out_data + n * K + k, args[k],
                                           row_end - row_start);
      }
    });
  });

  return std::make_tuple(out, arg_out);
}

torch::Tensor gather_csr_cpu(torch::Tensor src, torch::Tensor indptr,
                             torch::optional<torch::Tensor> optional_out) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (optional_out.has_value())
    CHECK_CPU(optional_out.value());

  CHECK_INPUT(src.dim() >= indptr.dim());

  auto sizes = indptr.sizes().vec();
  for (auto i = 0; i < indptr.dim() - 1; i++)
    sizes[i] = src.size(i);
  indptr = indptr.expand(sizes);

  auto dim = indptr.dim() - 1;
rusty1s's avatar
rusty1s committed
104
  CHECK_INPUT(src.size(dim) == 0 || src.size(dim) == indptr.size(dim) - 1);
rusty1s's avatar
rusty1s committed
105
106
107
108
109
110
111
112
113
114
115

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
    for (auto i = 0; i < out.dim(); i++)
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
  } else {
    auto sizes = src.sizes().vec();
rusty1s's avatar
rusty1s committed
116
117
118
119
    if (src.numel() > 0)
      sizes[dim] = *indptr.flatten()[-1].data_ptr<int64_t>();
    else
      sizes[dim] = 0;
rusty1s's avatar
rusty1s committed
120
121
122
    out = torch::empty(sizes, src.options());
  }

rusty1s's avatar
rusty1s committed
123
124
125
  if (src.numel() == 0)
    return out;

rusty1s's avatar
rusty1s committed
126
127
128
129
130
131
132
133
134
135
136
137
  auto N = src.size(dim) * (indptr.numel() / indptr.size(-1));
  auto K = src.numel() / N;
  auto E = out.size(dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "gather_csr", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    std::vector<scalar_t> vals(K);
    int64_t row_start, row_end;
rusty1s's avatar
rusty1s committed
138
    for (auto n = 0; n < N; n++) {
rusty1s's avatar
rusty1s committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
      auto offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
      row_start = indptr_info.data[offset];
      row_end = indptr_info.data[offset + stride];

      for (auto k = 0; k < K; k++)
        vals[k] = src_data[n * K + k];

      offset = (n / (indptr.size(-1) - 1)) * E * K;
      for (auto e = row_start; e < row_end; e++)
        for (auto k = 0; k < K; k++)
          out_data[offset + e * K + k] = vals[k];
    }
  });

  return out;
}