segment_csr_cpu.cpp 4.58 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include "segment_csr_cpu.h"

#include "index_info.h"
#include "reducer.h"
#include "utils.h"

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_csr_cpu(torch::Tensor src, torch::Tensor indptr,
                torch::optional<torch::Tensor> optional_out,
                std::string reduce) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (optional_out.has_value())
    CHECK_CPU(optional_out.value());

  CHECK_INPUT(src.dim() >= indptr.dim());

  auto sizes = indptr.sizes().vec();
  for (auto i = 0; i < indptr.dim() - 1; i++)
    sizes[i] = src.size(i);
  indptr = indptr.expand(sizes);

  auto dim = indptr.dim() - 1;

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
    for (int i = 0; i < out.dim(); i++)
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
    CHECK_INPUT(out.size(dim) == indptr.size(dim) - 1);
  } else {
    sizes = src.sizes().vec();
    sizes[dim] = indptr.size(dim) - 1;
    out = torch::empty(sizes, src.options());
  }

  torch::optional<torch::Tensor> arg_out = torch::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
    arg_out = torch::full(out.sizes(), src.size(dim), indptr.options());
    arg_out_data = arg_out.value().data_ptr<int64_t>();
  }

  auto N = out.size(dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
  auto E = src.size(dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  std::vector<int64_t> args(K);
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    std::vector<scalar_t> vals(K);
    int64_t row_start, row_end;
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (auto n = 0; n < N; n++) {
        auto offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
        row_start = indptr_info.data[offset];
        row_end = indptr_info.data[offset + stride];

        offset = (n / (indptr.size(-1) - 1)) * E * K;
        for (auto k = 0; k < K; k++)
          vals[k] = Reducer<scalar_t, REDUCE>::init();

        for (auto e = row_start; e < row_end; e++) {
          CHECK_INPUT(e < E);
          for (auto k = 0; k < K; k++)
            Reducer<scalar_t, REDUCE>::update(
                &vals[k], src_data[offset + e * K + k], &args[k], e);
        }

        for (auto k = 0; k < K; k++)
          Reducer<scalar_t, REDUCE>::write(out_data + n * K + k, vals[k],
                                           arg_out_data + n * K + k, args[k],
                                           row_end - row_start);
      }
    });
  });

  return std::make_tuple(out, arg_out);
}

torch::Tensor gather_csr_cpu(torch::Tensor src, torch::Tensor indptr,
                             torch::optional<torch::Tensor> optional_out) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (optional_out.has_value())
    CHECK_CPU(optional_out.value());

  CHECK_INPUT(src.dim() >= indptr.dim());

  auto sizes = indptr.sizes().vec();
  for (auto i = 0; i < indptr.dim() - 1; i++)
    sizes[i] = src.size(i);
  indptr = indptr.expand(sizes);

  auto dim = indptr.dim() - 1;
  CHECK_INPUT(src.size(dim) == indptr.size(dim) - 1);

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
    for (auto i = 0; i < out.dim(); i++)
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
  } else {
    auto sizes = src.sizes().vec();
    sizes[dim] = *indptr.flatten()[-1].data_ptr<int64_t>();
    out = torch::empty(sizes, src.options());
  }

  auto N = src.size(dim) * (indptr.numel() / indptr.size(-1));
  auto K = src.numel() / N;
  auto E = out.size(dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "gather_csr", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    std::vector<scalar_t> vals(K);
    int64_t row_start, row_end;
    for (int n = 0; n < N; n++) {
      auto offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
      row_start = indptr_info.data[offset];
      row_end = indptr_info.data[offset + stride];

      for (auto k = 0; k < K; k++)
        vals[k] = src_data[n * K + k];

      offset = (n / (indptr.size(-1) - 1)) * E * K;
      for (auto e = row_start; e < row_end; e++)
        for (auto k = 0; k < K; k++)
          out_data[offset + e * K + k] = vals[k];
    }
  });

  return out;
}