softmax.py 1.82 KB
Newer Older
1
2
from typing import Optional

3
4
import torch

rusty1s's avatar
rusty1s committed
5
from torch_scatter import scatter_sum, scatter_max
6
from torch_scatter.utils import broadcast
7

8

rusty1s's avatar
rusty1s committed
9
def scatter_softmax(src: torch.Tensor, index: torch.Tensor,
10
11
                    dim: int = -1,
                    dim_size: Optional[int] = None) -> torch.Tensor:
12
    if not torch.is_floating_point(src):
13
14
        raise ValueError('`scatter_softmax` can only be computed over tensors '
                         'with floating point data types.')
15

rusty1s's avatar
rusty1s committed
16
17
    index = broadcast(index, src, dim)

18
19
    max_value_per_index = scatter_max(
        src, index, dim=dim, dim_size=dim_size)[0]
20
    max_per_src_element = max_value_per_index.gather(dim, index)
21

22
    recentered_scores = src - max_per_src_element
rusty1s's avatar
rusty1s committed
23
    recentered_scores_exp = recentered_scores.exp_()
24

25
26
    sum_per_index = scatter_sum(
        recentered_scores_exp, index, dim, dim_size=dim_size)
rusty1s's avatar
rusty1s committed
27
    normalizing_constants = sum_per_index.gather(dim, index)
28

rusty1s's avatar
rusty1s committed
29
    return recentered_scores_exp.div(normalizing_constants)
30

31

rusty1s's avatar
rusty1s committed
32
def scatter_log_softmax(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
33
34
                        eps: float = 1e-12,
                        dim_size: Optional[int] = None) -> torch.Tensor:
35
    if not torch.is_floating_point(src):
36
        raise ValueError('`scatter_log_softmax` can only be computed over '
37
                         'tensors with floating point data types.')
38

rusty1s's avatar
rusty1s committed
39
40
    index = broadcast(index, src, dim)

41
42
    max_value_per_index = scatter_max(
        src, index, dim=dim, dim_size=dim_size)[0]
43
44
45
    max_per_src_element = max_value_per_index.gather(dim, index)

    recentered_scores = src - max_per_src_element
46

47
48
    sum_per_index = scatter_sum(
        recentered_scores.exp(), index, dim, dim_size=dim_size)
rusty1s's avatar
rusty1s committed
49
    normalizing_constants = sum_per_index.add_(eps).log_().gather(dim, index)
50

rusty1s's avatar
rusty1s committed
51
    return recentered_scores.sub_(normalizing_constants)