segment.cpp 8.92 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include <torch/extension.h>

rusty1s's avatar
rusty1s committed
3
4
5
#include "compat.h"
#include "index_info.h"

6
7
#include <vector>

rusty1s's avatar
rusty1s committed
8
9
#define CHECK_CPU(x) AT_ASSERTM(!x.type().is_cuda(), #x " must be CPU tensor")

rusty1s's avatar
rusty1s committed
10
11
12
13
14
enum ReductionType { SUM, MEAN, MIN, MAX };

const std::map<std::string, ReductionType> reduce2REDUCE = {
    {"sum", SUM}, {"add", SUM}, {"mean", MEAN}, {"min", MIN}, {"max", MAX},
};
rusty1s's avatar
rusty1s committed
15
16
17

#define AT_DISPATCH_REDUCTION_TYPES(reduce, ...)                               \
  [&] {                                                                        \
rusty1s's avatar
rusty1s committed
18
19
20
    switch (reduce2REDUCE.at(reduce)) {                                        \
    case SUM: {                                                                \
      const ReductionType REDUCE = SUM;                                        \
rusty1s's avatar
rusty1s committed
21
      return __VA_ARGS__();                                                    \
rusty1s's avatar
rusty1s committed
22
23
24
    }                                                                          \
    case MEAN: {                                                               \
      const ReductionType REDUCE = MEAN;                                       \
rusty1s's avatar
rusty1s committed
25
      return __VA_ARGS__();                                                    \
rusty1s's avatar
rusty1s committed
26
27
28
    }                                                                          \
    case MIN: {                                                                \
      const ReductionType REDUCE = MIN;                                        \
rusty1s's avatar
rusty1s committed
29
      return __VA_ARGS__();                                                    \
rusty1s's avatar
rusty1s committed
30
31
32
    }                                                                          \
    case MAX: {                                                                \
      const ReductionType REDUCE = MAX;                                        \
rusty1s's avatar
rusty1s committed
33
34
      return __VA_ARGS__();                                                    \
    }                                                                          \
rusty1s's avatar
rusty1s committed
35
    }                                                                          \
rusty1s's avatar
rusty1s committed
36
37
  }()

rusty1s's avatar
rusty1s committed
38
39
template <typename scalar_t, ReductionType REDUCE> struct Reducer {
  static inline scalar_t init() {
rusty1s's avatar
rusty1s committed
40
41
42
43
44
45
46
47
48
    if (REDUCE == MIN) {
      return std::numeric_limits<scalar_t>::max();
    } else if (REDUCE == MAX) {
      return std::numeric_limits<scalar_t>::lowest();
    } else {
      return (scalar_t)0;
    }
  }

rusty1s's avatar
rusty1s committed
49
  static inline void update(scalar_t *val, scalar_t new_val, int64_t *arg,
rusty1s's avatar
rusty1s committed
50
                            int64_t new_arg) {
rusty1s's avatar
rusty1s committed
51
    if (REDUCE == SUM || REDUCE == MEAN) {
rusty1s's avatar
rusty1s committed
52
53
54
55
56
57
58
59
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
      *arg = new_arg;
    }
  }

rusty1s's avatar
rusty1s committed
60
  static inline void write(scalar_t *address, scalar_t val,
rusty1s's avatar
rusty1s committed
61
                           int64_t *arg_address, int64_t arg, int count) {
rusty1s's avatar
rusty1s committed
62
    if (REDUCE == SUM) {
rusty1s's avatar
rusty1s committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
      *address = val;
    } else if (REDUCE == MEAN) {
      *address = val / (count > 0 ? count : (scalar_t)1);
    } else if (REDUCE == MIN || REDUCE == MAX) {
      if (count > 0) {
        *address = val;
        *arg_address = arg;
      } else {
        *address = (scalar_t)0;
      }
    }
  }
};

rusty1s's avatar
rusty1s committed
77
78
79
80
81
82
83
std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_csr(at::Tensor src, at::Tensor indptr, at::optional<at::Tensor> out_opt,
            std::string reduce) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (out_opt.has_value())
    CHECK_CPU(out_opt.value());
rusty1s's avatar
rusty1s committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

  AT_ASSERTM(src.dim() >= indptr.dim(), "Input mismatch");

  // Broadcasting `indptr` via `expand`.
  auto sizes = indptr.sizes().vec();
  for (int i = 0; i < indptr.dim() - 1; i++) {
    sizes[i] = src.size(i);
  }
  indptr = indptr.expand(sizes);

  src = src.contiguous();
  auto reduce_dim = indptr.dim() - 1;

  at::Tensor out;
  if (out_opt.has_value()) {
    out = out_opt.value().contiguous();
    for (int i = 0; i < out.dim(); i++)
      if (i != reduce_dim)
        AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");
    AT_ASSERTM(out.size(reduce_dim) == indptr.size(reduce_dim) - 1,
               "Input mismatch");
  } else {
    sizes = src.sizes().vec();
    sizes[reduce_dim] = indptr.size(reduce_dim) - 1;
    out = at::empty(sizes, src.options());
  }

  at::optional<at::Tensor> arg_out = at::nullopt;
  int64_t *arg_out_data = nullptr;
rusty1s's avatar
rusty1s committed
113
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
rusty1s's avatar
rusty1s committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    arg_out = at::full_like(out, src.size(reduce_dim), indptr.options());
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
  }

  auto N = out.size(reduce_dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
  auto E = src.size(reduce_dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr", [&] {
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

128
129
130
    std::vector<scalar_t> vals(K);
    int64_t row_start, row_end;
    std::vector<int64_t> args(K);
rusty1s's avatar
rusty1s committed
131
132
133
134
135
136
137
138
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (int n = 0; n < N; n++) {
        int offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
        row_start = indptr_info.data[offset];
        row_end = indptr_info.data[offset + stride];

        offset = (n / (indptr.size(-1) - 1)) * E * K;
        for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
139
          vals[k] = Reducer<scalar_t, REDUCE>::init();
140
141
142
        }
        for (int64_t e = row_start; e < row_end; e++) {
          for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
143
            Reducer<scalar_t, REDUCE>::update(
144
                &vals[k], src_data[offset + e * K + k], &args[k], e);
rusty1s's avatar
rusty1s committed
145
          }
146
147
        }
        for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
148
          Reducer<scalar_t, REDUCE>::write(out_data + n * K + k, vals[k],
149
                                           arg_out_data + n * K + k, args[k],
rusty1s's avatar
rusty1s committed
150
151
152
153
154
155
156
                                           row_end - row_start);
        }
      }
    });
  });

  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
157
158
159
160
161
162
163
164
}

std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_coo(at::Tensor src, at::Tensor index, at::Tensor out,
            std::string reduce) {
  CHECK_CPU(src);
  CHECK_CPU(index);
  CHECK_CPU(out);
rusty1s's avatar
rusty1s committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

  AT_ASSERTM(src.dim() >= index.dim(), "Input mismatch");

  // Broadcasting `index` via `expand`.
  auto sizes = index.sizes().vec();
  for (int i = 0; i < index.dim(); i++) {
    sizes[i] = src.size(i);
  }
  index = index.expand(sizes);

  src = src.contiguous();
  out = out.contiguous();
  auto reduce_dim = index.dim() - 1;

  for (int i = 0; i < out.dim(); i++)
    if (i != reduce_dim)
      AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");

  at::optional<at::Tensor> arg_out = at::nullopt;
  int64_t *arg_out_data = nullptr;
rusty1s's avatar
rusty1s committed
185
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
rusty1s's avatar
rusty1s committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    arg_out = at::full_like(out, src.size(reduce_dim), index.options());
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
  }

  auto E_1 = index.numel() / src.size(reduce_dim);
  auto E_2 = src.size(reduce_dim);
  auto K = src.numel() / index.numel();
  auto N = out.size(reduce_dim);

  auto index_info = getTensorInfo<int64_t>(index);
  auto stride = index_info.strides[index_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_coo", [&] {
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

201
202
203
    std::vector<scalar_t> vals(K);
    int64_t idx, next_idx, row_start;
    std::vector<int64_t> args(K);
rusty1s's avatar
rusty1s committed
204
205
206
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (int e_1 = 0; e_1 < E_1; e_1++) {
        int offset = IndexToOffset<int64_t>::get(e_1 * E_2, index_info);
207
        idx = index_info.data[offset];
rusty1s's avatar
rusty1s committed
208
209

        for (int k = 0; k < K; k++) {
210
211
          vals[k] = out_data[e_1 * N * K + k];
        }
rusty1s's avatar
rusty1s committed
212

rusty1s's avatar
rusty1s committed
213
        row_start = 0;
214
215
216
        for (int e_2 = 0; e_2 < E_2; e_2++) {

          for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
217
            Reducer<scalar_t, REDUCE>::update(
218
219
                &vals[k], src_data[e_1 * E_2 * K + e_2 * K + k], &args[k], e_2);
          }
rusty1s's avatar
rusty1s committed
220

221
222
          if (e_2 == E_2 - 1) {
            for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
223
              Reducer<scalar_t, REDUCE>::write(
224
225
                  out_data + e_1 * N * K + idx * K + k, vals[k],
                  arg_out_data + e_1 * N * K + idx * K + k, args[k],
rusty1s's avatar
rusty1s committed
226
                  e_2 + 1 - row_start);
227
228
229
            }
          } else {
            next_idx = index_info.data[offset + (e_2 + 1) * stride];
rusty1s's avatar
rusty1s committed
230
            assert(idx <= next_idx);
rusty1s's avatar
rusty1s committed
231

232
233
            if (idx != next_idx) {
              for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
234
                Reducer<scalar_t, REDUCE>::write(
235
236
                    out_data + e_1 * N * K + idx * K + k, vals[k],
                    arg_out_data + e_1 * N * K + idx * K + k, args[k],
rusty1s's avatar
rusty1s committed
237
238
                    e_2 + 1 - row_start);

239
                vals[k] = out_data[e_1 * N * K + next_idx * K + k];
rusty1s's avatar
rusty1s committed
240
              }
241
              row_start = e_2 + 1;
rusty1s's avatar
rusty1s committed
242
            }
243
244

            idx = next_idx;
rusty1s's avatar
rusty1s committed
245
246
247
248
249
250
251
          }
        }
      }
    });
  });

  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
252
253
254
255
256
257
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("segment_csr", &segment_csr, "Segment CSR (CPU)");
  m.def("segment_coo", &segment_coo, "Segment COO (CPU)");
}