segment.cpp 8.5 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include <torch/extension.h>

rusty1s's avatar
rusty1s committed
3
4
5
#include "compat.h"
#include "index_info.h"

rusty1s's avatar
rusty1s committed
6
7
#define CHECK_CPU(x) AT_ASSERTM(!x.type().is_cuda(), #x " must be CPU tensor")

rusty1s's avatar
rusty1s committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
enum ReductionType { ADD, MEAN, MIN, MAX };

#define AT_DISPATCH_REDUCTION_TYPES(reduce, ...)                               \
  [&] {                                                                        \
    if (reduce == "add") {                                                     \
      const ReductionType REDUCE = ADD;                                        \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "mean") {                                             \
      const ReductionType REDUCE = MEAN;                                       \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "min") {                                              \
      const ReductionType REDUCE = MIN;                                        \
      return __VA_ARGS__();                                                    \
    } else if (reduce == "max") {                                              \
      const ReductionType REDUCE = MAX;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
  }()

template <typename scalar_t, ReductionType REDUCE> struct Reducer {
  static inline scalar_t init() {
    if (REDUCE == MIN) {
      return std::numeric_limits<scalar_t>::max();
    } else if (REDUCE == MAX) {
      return std::numeric_limits<scalar_t>::lowest();
    } else {
      return (scalar_t)0;
    }
  }

  static inline void update(scalar_t *val, scalar_t new_val) {
    if (REDUCE == ADD || REDUCE == MEAN) {
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
    }
  }

  static inline void update(scalar_t *val, scalar_t new_val, int64_t *arg,
                            int64_t new_arg) {
    if (REDUCE == ADD || REDUCE == MEAN) {
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
      *arg = new_arg;
    }
  }

  static inline void write(scalar_t *address, scalar_t val,
                           int64_t *arg_address, int64_t arg, int count) {
    if (REDUCE == ADD) {
      *address = val;
    } else if (REDUCE == MEAN) {
      *address = val / (count > 0 ? count : (scalar_t)1);
    } else if (REDUCE == MIN || REDUCE == MAX) {
      if (count > 0) {
        *address = val;
        *arg_address = arg;
      } else {
        *address = (scalar_t)0;
      }
    }
  }
};

rusty1s's avatar
rusty1s committed
75
76
77
78
79
80
81
std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_csr(at::Tensor src, at::Tensor indptr, at::optional<at::Tensor> out_opt,
            std::string reduce) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (out_opt.has_value())
    CHECK_CPU(out_opt.value());
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

  AT_ASSERTM(src.dim() >= indptr.dim(), "Input mismatch");

  // Broadcasting `indptr` via `expand`.
  auto sizes = indptr.sizes().vec();
  for (int i = 0; i < indptr.dim() - 1; i++) {
    sizes[i] = src.size(i);
  }
  indptr = indptr.expand(sizes);

  src = src.contiguous();
  auto reduce_dim = indptr.dim() - 1;

  at::Tensor out;
  if (out_opt.has_value()) {
    out = out_opt.value().contiguous();
    for (int i = 0; i < out.dim(); i++)
      if (i != reduce_dim)
        AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");
    AT_ASSERTM(out.size(reduce_dim) == indptr.size(reduce_dim) - 1,
               "Input mismatch");
  } else {
    sizes = src.sizes().vec();
    sizes[reduce_dim] = indptr.size(reduce_dim) - 1;
    out = at::empty(sizes, src.options());
  }

  at::optional<at::Tensor> arg_out = at::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce == "min" || reduce == "max") {
    arg_out = at::full_like(out, src.size(reduce_dim), indptr.options());
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
  }

  auto N = out.size(reduce_dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
  auto E = src.size(reduce_dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr", [&] {
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

126
127
    scalar_t vals[K];
    int64_t row_start, row_end, args[K];
rusty1s's avatar
rusty1s committed
128
129
130
131
132
133
134
135
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (int n = 0; n < N; n++) {
        int offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
        row_start = indptr_info.data[offset];
        row_end = indptr_info.data[offset + stride];

        offset = (n / (indptr.size(-1) - 1)) * E * K;
        for (int k = 0; k < K; k++) {
136
137
138
139
          vals[k] = Reducer<scalar_t, REDUCE>::init();
        }
        for (int64_t e = row_start; e < row_end; e++) {
          for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
140
            Reducer<scalar_t, REDUCE>::update(
141
                &vals[k], src_data[offset + e * K + k], &args[k], e);
rusty1s's avatar
rusty1s committed
142
          }
143
144
145
146
        }
        for (int k = 0; k < K; k++) {
          Reducer<scalar_t, REDUCE>::write(out_data + n * K + k, vals[k],
                                           arg_out_data + n * K + k, args[k],
rusty1s's avatar
rusty1s committed
147
148
149
150
151
152
153
                                           row_end - row_start);
        }
      }
    });
  });

  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
154
155
156
157
158
159
160
161
}

std::tuple<at::Tensor, at::optional<at::Tensor>>
segment_coo(at::Tensor src, at::Tensor index, at::Tensor out,
            std::string reduce) {
  CHECK_CPU(src);
  CHECK_CPU(index);
  CHECK_CPU(out);
rusty1s's avatar
rusty1s committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

  AT_ASSERTM(src.dim() >= index.dim(), "Input mismatch");

  // Broadcasting `index` via `expand`.
  auto sizes = index.sizes().vec();
  for (int i = 0; i < index.dim(); i++) {
    sizes[i] = src.size(i);
  }
  index = index.expand(sizes);

  src = src.contiguous();
  out = out.contiguous();
  auto reduce_dim = index.dim() - 1;

  for (int i = 0; i < out.dim(); i++)
    if (i != reduce_dim)
      AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");

  at::optional<at::Tensor> arg_out = at::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce == "min" || reduce == "max") {
    arg_out = at::full_like(out, src.size(reduce_dim), index.options());
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
  }

  auto E_1 = index.numel() / src.size(reduce_dim);
  auto E_2 = src.size(reduce_dim);
  auto K = src.numel() / index.numel();
  auto N = out.size(reduce_dim);

  auto index_info = getTensorInfo<int64_t>(index);
  auto stride = index_info.strides[index_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_coo", [&] {
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

198
199
    scalar_t vals[K];
    int64_t idx, next_idx, row_start, args[K];
rusty1s's avatar
rusty1s committed
200
201
202
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (int e_1 = 0; e_1 < E_1; e_1++) {
        int offset = IndexToOffset<int64_t>::get(e_1 * E_2, index_info);
203
        idx = index_info.data[offset];
rusty1s's avatar
rusty1s committed
204
205

        for (int k = 0; k < K; k++) {
206
207
          vals[k] = out_data[e_1 * N * K + k];
        }
rusty1s's avatar
rusty1s committed
208

rusty1s's avatar
rusty1s committed
209
        row_start = 0;
210
211
212
        for (int e_2 = 0; e_2 < E_2; e_2++) {

          for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
213
            Reducer<scalar_t, REDUCE>::update(
214
215
                &vals[k], src_data[e_1 * E_2 * K + e_2 * K + k], &args[k], e_2);
          }
rusty1s's avatar
rusty1s committed
216

217
218
          if (e_2 == E_2 - 1) {
            for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
219
              Reducer<scalar_t, REDUCE>::write(
220
221
                  out_data + e_1 * N * K + idx * K + k, vals[k],
                  arg_out_data + e_1 * N * K + idx * K + k, args[k],
rusty1s's avatar
rusty1s committed
222
                  e_2 + 1 - row_start);
223
224
225
            }
          } else {
            next_idx = index_info.data[offset + (e_2 + 1) * stride];
rusty1s's avatar
rusty1s committed
226
            assert(idx <= next_idx);
rusty1s's avatar
rusty1s committed
227

228
229
            if (idx != next_idx) {
              for (int k = 0; k < K; k++) {
rusty1s's avatar
rusty1s committed
230
                Reducer<scalar_t, REDUCE>::write(
231
232
                    out_data + e_1 * N * K + idx * K + k, vals[k],
                    arg_out_data + e_1 * N * K + idx * K + k, args[k],
rusty1s's avatar
rusty1s committed
233
234
                    e_2 + 1 - row_start);

235
                vals[k] = out_data[e_1 * N * K + next_idx * K + k];
rusty1s's avatar
rusty1s committed
236
              }
237
              row_start = e_2 + 1;
rusty1s's avatar
rusty1s committed
238
            }
239
240

            idx = next_idx;
rusty1s's avatar
rusty1s committed
241
242
243
244
245
246
247
          }
        }
      }
    });
  });

  return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
248
249
250
251
252
253
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("segment_csr", &segment_csr, "Segment CSR (CPU)");
  m.def("segment_coo", &segment_coo, "Segment COO (CPU)");
}